MATCHED-PAIR ROLLOVER IMPACTS OF ROLLCAGED AND PRODUCTION ROOF CARS USING THE CONTROLLED ROLLOVER IMPACT SYSTEM (CRIS). IN: OCCUPANT AND VEHICLE RESPONSES IN ROLLOVERS

E. Moffatt, Eddie Cooper, J. Croteau, K. Orlowski, Debora R. Marth, J. Carter
{"title":"MATCHED-PAIR ROLLOVER IMPACTS OF ROLLCAGED AND PRODUCTION ROOF CARS USING THE CONTROLLED ROLLOVER IMPACT SYSTEM (CRIS). IN: OCCUPANT AND VEHICLE RESPONSES IN ROLLOVERS","authors":"E. Moffatt, Eddie Cooper, J. Croteau, K. Orlowski, Debora R. Marth, J. Carter","doi":"10.4271/2003-01-0172","DOIUrl":null,"url":null,"abstract":"The authors of this chapter, from a comprehensive text on occupant and vehicle responses in rollovers, report on a study of three rollcaged and three production roof vehicles were exposed to matched-pair rollover impacts using the Controlled Rollover Impact System (CRIS). The CRIS consists of a towed semi-trailer, which suspends and drops a rotating vehicle from a support frame on the rear of the trailer. The authors found that the roof-to-ground contacts were representative of severe impacts in previous rollover testing and real world rollovers. Results showed that the seat-belted dummies measured nearly identical head impacts and neck loads, with or without the rollcage, despite significant roof crush in the production roof vehicles. The peak head accelerations and neck loads were a result of the roof striking the ground and stopping and were not related to roof/pillar deformation. If humans were subjected to these same impact conditions, the rollcaged vehicles would not have protected them. The authors conclude that the CRIS is a very reliable tool to conduct repeatable rollover impacts with controlled dummy positioning.","PeriodicalId":291036,"journal":{"name":"Publication of: Society of Automotive Engineers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publication of: Society of Automotive Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2003-01-0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

The authors of this chapter, from a comprehensive text on occupant and vehicle responses in rollovers, report on a study of three rollcaged and three production roof vehicles were exposed to matched-pair rollover impacts using the Controlled Rollover Impact System (CRIS). The CRIS consists of a towed semi-trailer, which suspends and drops a rotating vehicle from a support frame on the rear of the trailer. The authors found that the roof-to-ground contacts were representative of severe impacts in previous rollover testing and real world rollovers. Results showed that the seat-belted dummies measured nearly identical head impacts and neck loads, with or without the rollcage, despite significant roof crush in the production roof vehicles. The peak head accelerations and neck loads were a result of the roof striking the ground and stopping and were not related to roof/pillar deformation. If humans were subjected to these same impact conditions, the rollcaged vehicles would not have protected them. The authors conclude that the CRIS is a very reliable tool to conduct repeatable rollover impacts with controlled dummy positioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用可控侧翻碰撞系统的滚顶车和量产车顶车的配对侧翻碰撞(危机)。在:乘员和车辆对侧翻的反应
本章的作者,从一个全面的文本对乘员和车辆的反应在侧翻,报告了一项研究的三辆滚架和三辆生产车顶车辆暴露于匹配对侧翻碰撞使用控制侧翻碰撞系统(CRIS)。CRIS由拖曳半挂车组成,它从拖车后部的支撑架上悬挂和放下旋转车辆。研究人员发现,在之前的翻车测试和现实世界的翻车中,车顶与地面的接触是严重影响的代表。结果表明,尽管在生产的车顶车辆中有明显的车顶挤压,但在有或没有防滚架的情况下,安全带假人测量的头部撞击和颈部载荷几乎相同。顶部加速度峰值和颈部载荷峰值是顶板撞击地面并停止的结果,与顶板/矿柱变形无关。如果人类也受到同样的冲击,那么这种滚动式车辆就无法保护他们了。作者得出结论,CRIS是一种非常可靠的工具,可以通过控制假人定位来进行可重复的侧翻冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INNOVATIVE CHIP SET FOR PRESSURE AND ACCELERATION BASED AIRBAG SOLUTIONS. IN: AIR BAGS AND BELT RESTRAINTS A STUDY OF DRIVER'S MANEUVER CHARACTERISTICS USING THE JOY-STICK DEVICE. IN: HUMAN FACTORS IN DRIVING AND TELEMATICS, AND SEATING COMFORT BOUNCE-OVERS: FIXED OBJECT IMPACTS FOLLOWED BY ROLLOVERS. IN: OCCUPANT AND VEHICLE RESPONSES IN ROLLOVERS EVALUATION OF A VOICE-ACTIVATED SYSTEM USING A DRIVING SIMULATOR. IN: HUMAN FACTORS IN DRIVING AND TELEMATICS, AND SEATING COMFORT HOW TO USE PC-CRASH TO SIMULATE ROLLOVER CRASHES. IN: OCCUPANT AND VEHICLE RESPONSES IN ROLLOVERS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1