Fitness Landscape and Evolutionary Boolean Synthesis using Information

A. H. Aguirre, C. C. Coello
{"title":"Fitness Landscape and Evolutionary Boolean Synthesis using Information","authors":"A. H. Aguirre, C. C. Coello","doi":"10.1109/EH.2003.1217636","DOIUrl":null,"url":null,"abstract":"In this paper we show how information theory concepts can be used in evolutionary circuit design and minimization problems. Conditional entropy, mutual information, and normalized mutual information are commonly used to measure or estimate the amount of information shared by two random variables. Although the simple number reported by these measures may guide the evolutionary search, we show that normalized mutual information produces more amenable fitness landscape for search than the others. Several landscape plots and experiments are used to support and explain our main argument.","PeriodicalId":227900,"journal":{"name":"Evolvable Hardware","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2003.1217636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we show how information theory concepts can be used in evolutionary circuit design and minimization problems. Conditional entropy, mutual information, and normalized mutual information are commonly used to measure or estimate the amount of information shared by two random variables. Although the simple number reported by these measures may guide the evolutionary search, we show that normalized mutual information produces more amenable fitness landscape for search than the others. Several landscape plots and experiments are used to support and explain our main argument.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息的适应度景观和进化布尔综合
在本文中,我们展示了如何将信息理论概念用于进化电路设计和最小化问题。条件熵、互信息和归一化互信息通常用于度量或估计两个随机变量共享的信息量。虽然这些测量报告的简单数字可以指导进化搜索,但我们表明,标准化的互信息比其他信息产生更适合搜索的适应度景观。几个景观地块和实验被用来支持和解释我们的主要论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical Networks-on-Chip Architecture for Neuromorphic Hardware Evolvable Robot Hardware Fitness Landscape and Evolutionary Boolean Synthesis using Information Evolvable Optical Systems Developmental Evolvable Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1