Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) Modeling in Forecasting Covid-19 Cases in Indonesia

R. Rahmawati, S. Annas, A. Aswi
{"title":"Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) Modeling in Forecasting Covid-19 Cases in Indonesia","authors":"R. Rahmawati, S. Annas, A. Aswi","doi":"10.35580/sainsmat121442822023","DOIUrl":null,"url":null,"abstract":"Covid-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The spread of Covid-19 in Indonesia has grown rapidly that the World Health Organization (WHO) has declared Covid-19 a pandemic. Covid-19 cases have spread to 34 provinces in Indonesia. Covid-19 data in Indonesia involves space and time so the appropriate modeling is the space-time model. Space-time modeling of the Covid-19 case in 34 provinces in Indonesia using the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model has not been carried out. The purpose of this research is to get the best GSTARIMA model and forecat the Covid-19 case for the next several times. This model incorporates time and location interdependence with different parameters for each location. Identification of the order of the AR and MA was carried out through the STACF and STPACF plots. For simplicity of interpretation, the spatial order is chosen first order. In this study, the queen contiguity and the inverse distance location weighting matrix were used. The parameter estimation used is Ordinary Least Square (OLS). The results show that the best model for predicting Covid-19 cases in 34 provinces in Indonesia is the GSTARIMA model (1,1,0)1 using an inverse distance weighting matrix with the smallest RMSE value of 1.22.Keywords: Covid-19, GSTARIMA, Queen Contiguity, Inverse Distance, OLS.","PeriodicalId":347044,"journal":{"name":"Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/sainsmat121442822023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Covid-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The spread of Covid-19 in Indonesia has grown rapidly that the World Health Organization (WHO) has declared Covid-19 a pandemic. Covid-19 cases have spread to 34 provinces in Indonesia. Covid-19 data in Indonesia involves space and time so the appropriate modeling is the space-time model. Space-time modeling of the Covid-19 case in 34 provinces in Indonesia using the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model has not been carried out. The purpose of this research is to get the best GSTARIMA model and forecat the Covid-19 case for the next several times. This model incorporates time and location interdependence with different parameters for each location. Identification of the order of the AR and MA was carried out through the STACF and STPACF plots. For simplicity of interpretation, the spatial order is chosen first order. In this study, the queen contiguity and the inverse distance location weighting matrix were used. The parameter estimation used is Ordinary Least Square (OLS). The results show that the best model for predicting Covid-19 cases in 34 provinces in Indonesia is the GSTARIMA model (1,1,0)1 using an inverse distance weighting matrix with the smallest RMSE value of 1.22.Keywords: Covid-19, GSTARIMA, Queen Contiguity, Inverse Distance, OLS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义时空自回归综合移动平均(GSTARIMA)模型预测印度尼西亚Covid-19病例
Covid-19是一种由严重急性呼吸综合征冠状病毒-2 (SARS-CoV-2)引起的传染病。Covid-19在印度尼西亚的传播速度很快,世界卫生组织(世卫组织)宣布Covid-19为大流行。新冠肺炎病例已蔓延到印度尼西亚的34个省份。印度尼西亚的Covid-19数据涉及空间和时间,因此适当的建模是时空模型。尚未使用广义时空自回归综合移动平均(GSTARIMA)模型对印度尼西亚34个省的Covid-19病例进行时空建模。本研究的目的是获得最佳的GSTARIMA模型,并预测未来几次的Covid-19病例。该模型结合了时间和地点的相互依赖性,每个地点都有不同的参数。通过STACF和STPACF图确定AR和MA的顺序。为便于解释,空间顺序选用一阶。在本研究中,使用皇后邻接和逆距离位置加权矩阵。参数估计采用普通最小二乘法(OLS)。结果表明,对印度尼西亚34个省份的新冠肺炎病例进行预测的最佳模型是使用逆距离加权矩阵的GSTARIMA模型(1,1,0)1,其RMSE值最小为1.22。关键词:Covid-19, GSTARIMA,皇后连续度,逆距离,OLS
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pengaruh Model Pembelajaran Treffinger terhadap Pemahaman Konsep Matematika Siswa Kelas XI MIPA SMAN 2 Majene Kemampuan Metakognitif Siswa d alam Pembelajaran IPA Kelas VII di SMP Bosowa School Makassar Pengembangan Instrumen Berpikir Kritis : Tutor Identifikasi Berfikir Kritis Dispersi: Studi Pendahuluan Revitalisasi Pemanfaatan Karbon Aktif sebagai Material Elektroda. Efektivitas Penggunaan Video Youtube dalam Model Pembelajaran Direct Instruction terhadap Hasil Belajar Peserta Didik Kelas X MIPA 1 SMA Negeri 1 Wonomulyo (Studi pada Materi Pokok Reaksi Reduksi dan Oksidasi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1