Traffic incident detection and modelling using Quantum Frequency Algorithm and AutoRegressive Integrated Moving Average models

Jeanelle E. Abanto, Charmailene C. Reyes, J. Malinao, H. Adorna
{"title":"Traffic incident detection and modelling using Quantum Frequency Algorithm and AutoRegressive Integrated Moving Average models","authors":"Jeanelle E. Abanto, Charmailene C. Reyes, J. Malinao, H. Adorna","doi":"10.1109/IISA.2013.6623679","DOIUrl":null,"url":null,"abstract":"In this study, we used AutoRegressive Integrated Moving Average (ARIMA) to effectively represent expected normal traffic behavior of those weeks identified to be abnormal in the previous literature. Using the 2006 North Luzon Expressway North Bound (NLEX NB) Balintawak (Blk) segment's hourly traffic volume and time mean speed data sets provided by the National Center for Transportation Studies (NCTS), we processed the data to generate time series plots of the weekly densities, the normal range of traffic density, and the abnormal. We obtained these through Quantum Frequency Algorithm (QFA). We fit the ARIMA model to some weeks of Blk which have evident occurrences of incidents as detected and crosschecked with the incidents data provided by NCTS. We performed a forecast of the fit and generated a time series plot of the superimposed plots of the actual data and the forecast for each of the top incidents generated in the previous literature. These plots provided a simplistic time-domain 2D visualizations that successfully exposed the abnormal points where incidents happened. These also provided an estimate of the expected traffic density behavior if incidents did not happen.","PeriodicalId":261368,"journal":{"name":"IISA 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2013.6623679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we used AutoRegressive Integrated Moving Average (ARIMA) to effectively represent expected normal traffic behavior of those weeks identified to be abnormal in the previous literature. Using the 2006 North Luzon Expressway North Bound (NLEX NB) Balintawak (Blk) segment's hourly traffic volume and time mean speed data sets provided by the National Center for Transportation Studies (NCTS), we processed the data to generate time series plots of the weekly densities, the normal range of traffic density, and the abnormal. We obtained these through Quantum Frequency Algorithm (QFA). We fit the ARIMA model to some weeks of Blk which have evident occurrences of incidents as detected and crosschecked with the incidents data provided by NCTS. We performed a forecast of the fit and generated a time series plot of the superimposed plots of the actual data and the forecast for each of the top incidents generated in the previous literature. These plots provided a simplistic time-domain 2D visualizations that successfully exposed the abnormal points where incidents happened. These also provided an estimate of the expected traffic density behavior if incidents did not happen.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子频率算法和自回归综合移动平均模型的交通事件检测与建模
在本研究中,我们使用自回归综合移动平均(ARIMA)来有效地表示那些在以前的文献中被识别为异常的周的预期正常交通行为。利用国家交通研究中心(NCTS)提供的2006年北吕宋高速公路北行(NLEX NB)巴林塔瓦克(Blk)路段的小时交通量和时间平均速度数据集,对数据进行处理,得到周密度、交通密度正常范围和异常范围的时间序列图。我们通过量子频率算法(QFA)获得了这些参数。我们将ARIMA模型拟合到Blk的几个星期,这些星期有明显的事件发生,并与nts提供的事件数据进行了交叉核对。我们对拟合进行了预测,并生成了实际数据的叠加图和先前文献中生成的每个顶级事件的预测的时间序列图。这些图提供了一个简单的时域二维可视化,成功地暴露了事件发生的异常点。这些还提供了在没有发生事故的情况下对预期交通密度行为的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an IoT Smart City framework Uncertainty reasoning for the Semantic Web based on Dempster-Shafer model Open data for e-government the Greek case On the creation of a Digital Cultural Heritage Map Density-based Kernel Scale estimation for Kernel clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1