Sijia Liu, Xingguo Li, Pin-Yu Chen, J. Haupt, Lisa Amini
{"title":"ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION","authors":"Sijia Liu, Xingguo Li, Pin-Yu Chen, J. Haupt, Lisa Amini","doi":"10.1109/GlobalSIP.2018.8646618","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the convergence of the zeroth-order stochastic projected gradient descent (ZO-SPGD) method for constrained convex and nonconvex optimization scenarios where only objective function values (not gradients) are directly available. We show statistical properties of a new random gradient estimator, constructed through random direction samples drawn from a bounded uniform distribution. We prove that ZO-SPGD yields a $O\\left( {\\frac{d}{{bq\\sqrt T }} + \\frac{1}{{\\sqrt T }}} \\right)$ convergence rate for convex but non-smooth optimization, where d is the number of optimization variables, b is the minibatch size, q is the number of random direction samples for gradient estimation, and T is the number of iterations. For nonconvex optimization, we show that ZO-SPGD achieves $O\\left( {\\frac{1}{{\\sqrt T }}} \\right)$ convergence rate but suffers an additional $O\\left( {\\frac{{d + q}}{{bq}}} \\right)$ error. Our the oretical investigation on ZO-SPGD provides a general framework to study the convergence rate of zeroth-order algorithms.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In this paper, we analyze the convergence of the zeroth-order stochastic projected gradient descent (ZO-SPGD) method for constrained convex and nonconvex optimization scenarios where only objective function values (not gradients) are directly available. We show statistical properties of a new random gradient estimator, constructed through random direction samples drawn from a bounded uniform distribution. We prove that ZO-SPGD yields a $O\left( {\frac{d}{{bq\sqrt T }} + \frac{1}{{\sqrt T }}} \right)$ convergence rate for convex but non-smooth optimization, where d is the number of optimization variables, b is the minibatch size, q is the number of random direction samples for gradient estimation, and T is the number of iterations. For nonconvex optimization, we show that ZO-SPGD achieves $O\left( {\frac{1}{{\sqrt T }}} \right)$ convergence rate but suffers an additional $O\left( {\frac{{d + q}}{{bq}}} \right)$ error. Our the oretical investigation on ZO-SPGD provides a general framework to study the convergence rate of zeroth-order algorithms.