ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION

Sijia Liu, Xingguo Li, Pin-Yu Chen, J. Haupt, Lisa Amini
{"title":"ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION","authors":"Sijia Liu, Xingguo Li, Pin-Yu Chen, J. Haupt, Lisa Amini","doi":"10.1109/GlobalSIP.2018.8646618","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the convergence of the zeroth-order stochastic projected gradient descent (ZO-SPGD) method for constrained convex and nonconvex optimization scenarios where only objective function values (not gradients) are directly available. We show statistical properties of a new random gradient estimator, constructed through random direction samples drawn from a bounded uniform distribution. We prove that ZO-SPGD yields a $O\\left( {\\frac{d}{{bq\\sqrt T }} + \\frac{1}{{\\sqrt T }}} \\right)$ convergence rate for convex but non-smooth optimization, where d is the number of optimization variables, b is the minibatch size, q is the number of random direction samples for gradient estimation, and T is the number of iterations. For nonconvex optimization, we show that ZO-SPGD achieves $O\\left( {\\frac{1}{{\\sqrt T }}} \\right)$ convergence rate but suffers an additional $O\\left( {\\frac{{d + q}}{{bq}}} \\right)$ error. Our the oretical investigation on ZO-SPGD provides a general framework to study the convergence rate of zeroth-order algorithms.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we analyze the convergence of the zeroth-order stochastic projected gradient descent (ZO-SPGD) method for constrained convex and nonconvex optimization scenarios where only objective function values (not gradients) are directly available. We show statistical properties of a new random gradient estimator, constructed through random direction samples drawn from a bounded uniform distribution. We prove that ZO-SPGD yields a $O\left( {\frac{d}{{bq\sqrt T }} + \frac{1}{{\sqrt T }}} \right)$ convergence rate for convex but non-smooth optimization, where d is the number of optimization variables, b is the minibatch size, q is the number of random direction samples for gradient estimation, and T is the number of iterations. For nonconvex optimization, we show that ZO-SPGD achieves $O\left( {\frac{1}{{\sqrt T }}} \right)$ convergence rate but suffers an additional $O\left( {\frac{{d + q}}{{bq}}} \right)$ error. Our the oretical investigation on ZO-SPGD provides a general framework to study the convergence rate of zeroth-order algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非凸优化的零阶随机投影梯度下降
本文分析了零阶随机投影梯度下降(ZO-SPGD)方法在只有目标函数值(非梯度)直接可用的约束凸和非凸优化场景下的收敛性。我们展示了一种新的随机梯度估计量的统计性质,它是通过从有界均匀分布中抽取的随机方向样本构造的。我们证明了ZO-SPGD对于凸但非光滑优化的收敛速度为$O\left( {\frac{d}{{bq\sqrt T }} + \frac{1}{{\sqrt T }}} \right)$,其中d为优化变量的数量,b为小批量大小,q为梯度估计的随机方向样本的数量,T为迭代次数。对于非凸优化,我们表明ZO-SPGD达到$O\left( {\frac{1}{{\sqrt T }}} \right)$收敛速度,但遭受额外的$O\left( {\frac{{d + q}}{{bq}}} \right)$误差。我们对ZO-SPGD的理论研究为研究零阶算法的收敛速度提供了一个一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1