ATO-EDGE: Adaptive Task Offloading for Deep Learning in Resource-Constrained Edge Computing Systems

Yihao Wang, Ling Gao, J. Ren, Rui Cao, Hai Wang, Jie Zheng, Quanli Gao
{"title":"ATO-EDGE: Adaptive Task Offloading for Deep Learning in Resource-Constrained Edge Computing Systems","authors":"Yihao Wang, Ling Gao, J. Ren, Rui Cao, Hai Wang, Jie Zheng, Quanli Gao","doi":"10.1109/ICPADS53394.2021.00025","DOIUrl":null,"url":null,"abstract":"On-device deep learning enables mobile devices to perform complex tasks, such as object detection and voice translation, regardless of the network condition. The advanced deep learning model gives an excellent performance, also leads to a heavy burden on resource-limited devices (i.e., mobile devices). To speed up the on-device deep learning. Prior studies focus on developing lightweight network architecture for real-time inference by sacrificing model accuracy. This paper presents ATO-EDGE: adaptive task offloading for deep learning based on edge computing. Considering three optimization goals, energy consumption, accuracy, and latency, ATO-EDGE leverages an offline pre-trained model to select a suitable deep learning model on a specific device to process the given task. We apply our approach to object detection and evaluate it on Jetson TX2, Xilinx ZYNQ 7020, and Raspberry 3B+. The deep learning model candidates contain ten typical object detection models trained on Microsoft COCO 2017 dataset. We obtain, on average, 28.25%, 35.44%, and 0.9 improvements respectively for latency, energy consumption, and mAP (mean average precision) when compared to the SOTA DETR model on the Raspberry Pi.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

On-device deep learning enables mobile devices to perform complex tasks, such as object detection and voice translation, regardless of the network condition. The advanced deep learning model gives an excellent performance, also leads to a heavy burden on resource-limited devices (i.e., mobile devices). To speed up the on-device deep learning. Prior studies focus on developing lightweight network architecture for real-time inference by sacrificing model accuracy. This paper presents ATO-EDGE: adaptive task offloading for deep learning based on edge computing. Considering three optimization goals, energy consumption, accuracy, and latency, ATO-EDGE leverages an offline pre-trained model to select a suitable deep learning model on a specific device to process the given task. We apply our approach to object detection and evaluate it on Jetson TX2, Xilinx ZYNQ 7020, and Raspberry 3B+. The deep learning model candidates contain ten typical object detection models trained on Microsoft COCO 2017 dataset. We obtain, on average, 28.25%, 35.44%, and 0.9 improvements respectively for latency, energy consumption, and mAP (mean average precision) when compared to the SOTA DETR model on the Raspberry Pi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATO-EDGE:资源受限边缘计算系统中深度学习的自适应任务卸载
设备上深度学习使移动设备能够执行复杂的任务,如对象检测和语音翻译,而不受网络条件的影响。先进的深度学习模型提供了出色的性能,但也导致资源有限的设备(即移动设备)负担沉重。加速设备上的深度学习。以往的研究主要是通过牺牲模型精度来开发轻量级的实时推理网络架构。提出了一种基于边缘计算的深度学习自适应任务卸载算法ATO-EDGE。考虑到能耗、准确性和延迟三个优化目标,ATO-EDGE利用离线预训练模型在特定设备上选择合适的深度学习模型来处理给定任务。我们将该方法应用于目标检测,并在Jetson TX2、Xilinx ZYNQ 7020和Raspberry 3B+上进行了评估。深度学习候选模型包含在Microsoft COCO 2017数据集上训练的10个典型目标检测模型。与树莓派上的SOTA DETR模型相比,我们在延迟、能耗和mAP(平均平均精度)方面平均分别提高了28.25%、35.44%和0.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Choosing Appropriate AI-enabled Edge Devices, Not the Costly Ones Collaborative Transmission over Intermediate Links in Duty-Cycle WSNs Efficient Asynchronous GCN Training on a GPU Cluster A Forecasting Method of Dual Traffic Condition Indicators Based on Ensemble Learning Simple yet Efficient Deployment of Scientific Applications in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1