Using Soft Similarity in Multi-label Classification for Reuters-21578 Corpus

J. Trejo, G. Sidorov, Marco Moreno, Sabino Miranda-Jiménez, Rodrigo Cadena Martínez
{"title":"Using Soft Similarity in Multi-label Classification for Reuters-21578 Corpus","authors":"J. Trejo, G. Sidorov, Marco Moreno, Sabino Miranda-Jiménez, Rodrigo Cadena Martínez","doi":"10.1109/MICAI.2014.7","DOIUrl":null,"url":null,"abstract":"In classification tasks one of the main problems is to choose which features provide best results, i.e., Construct a vector space model. In this paper, we show how to complement traditional vector space model with the concept of soft similarity. We use the combination of the traditional tf-idf model with latent Dirichlet allocation applied in multi-label classification. We considered multi-label files of the Reuters-21578 corpus as study case. The methodology is evaluated using the multi-label algorithm Rakell. We used the traditional tf-idf model as the baseline. We present the F1 measures for both models for various feature sets, preprocessing techniques and vector sizes. The new model obtains better results than the base line model.","PeriodicalId":189896,"journal":{"name":"2014 13th Mexican International Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In classification tasks one of the main problems is to choose which features provide best results, i.e., Construct a vector space model. In this paper, we show how to complement traditional vector space model with the concept of soft similarity. We use the combination of the traditional tf-idf model with latent Dirichlet allocation applied in multi-label classification. We considered multi-label files of the Reuters-21578 corpus as study case. The methodology is evaluated using the multi-label algorithm Rakell. We used the traditional tf-idf model as the baseline. We present the F1 measures for both models for various feature sets, preprocessing techniques and vector sizes. The new model obtains better results than the base line model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软相似度的路透社-21578语料多标签分类
在分类任务中,一个主要问题是选择哪些特征能提供最好的结果,即构造一个向量空间模型。在本文中,我们展示了如何用软相似度的概念来补充传统的向量空间模型。我们将传统的tf-idf模型与潜在的Dirichlet分配相结合,应用于多标签分类。我们以Reuters-21578语料库的多标签文件为研究案例。该方法使用多标签算法Rakell进行评估。我们使用传统的tf-idf模型作为基线。我们提出了针对各种特征集、预处理技术和矢量大小的两种模型的F1度量。新模型比基线模型得到了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sharing and Reusing Context Information in Ubiquitous Computing Environments Reconfigurable Logical Cells Using a Maximum Sensibility Neural Network Enhanced Knowledge Discovery Approach in Textual Case Based Reasoning Mining Academic Data Using Visual Patterns Development of an Ontologies System for Spatial Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1