A Missing Data Imputation Algorithm in Wireless Sensor Network Based on Minimized Similarity Distortion

Kun Niu, Fang Zhao, Xiuquan Qiao
{"title":"A Missing Data Imputation Algorithm in Wireless Sensor Network Based on Minimized Similarity Distortion","authors":"Kun Niu, Fang Zhao, Xiuquan Qiao","doi":"10.1109/ISCID.2013.172","DOIUrl":null,"url":null,"abstract":"This paper presents a novel wireless sensor network data imputation algorithm based on minimized similarity distortion (MSD). Firstly, the MSD algorithm considers attributes of the sensor datasets besides spatial and temporal to achieve complete dimensional data segmentations. It improves the problem of ignoring both the relationship of different attributes and the similar details in local data area. After that, it computes the distance between data units to get the k-nearest neighbors of the data units with missing values. For every missing value, MSD gives K preliminary predictive values with linear regression. Finally, MSD take the weighted K values as the final predictive values. Experimental results on real public wireless sensor data sets are provided to illustrate the efficiency and the robustness of the proposed algorithm.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a novel wireless sensor network data imputation algorithm based on minimized similarity distortion (MSD). Firstly, the MSD algorithm considers attributes of the sensor datasets besides spatial and temporal to achieve complete dimensional data segmentations. It improves the problem of ignoring both the relationship of different attributes and the similar details in local data area. After that, it computes the distance between data units to get the k-nearest neighbors of the data units with missing values. For every missing value, MSD gives K preliminary predictive values with linear regression. Finally, MSD take the weighted K values as the final predictive values. Experimental results on real public wireless sensor data sets are provided to illustrate the efficiency and the robustness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于最小相似度失真的无线传感器网络缺失数据输入算法
提出了一种基于最小化相似失真(MSD)的无线传感器网络数据输入算法。首先,MSD算法考虑传感器数据集的时空属性,实现完整的维度数据分割。它改善了局部数据区域中忽略不同属性之间的关系和相似细节的问题。之后,它计算数据单元之间的距离,以获得缺失值的数据单元的k个最近邻居。对于每一个缺失值,MSD用线性回归给出K个初步预测值。最后,MSD将加权后的K值作为最终预测值。在实际公共无线传感器数据集上的实验结果表明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1