Local Visual Primitives (LVP) for Face Modelling and Recognition

Xin Meng, S. Shan, Xilin Chen, Wen Gao
{"title":"Local Visual Primitives (LVP) for Face Modelling and Recognition","authors":"Xin Meng, S. Shan, Xilin Chen, Wen Gao","doi":"10.1109/ICPR.2006.773","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel simple yet effective generative model based on local visual primitives (LVP) for face modeling and classification. The LVPs, as the pattern of local face region, are learnt by clustering a great number of local patches. Visually, these LVPs correspond to intuitive low-level micro visual structures very well, and they are expected to constitute those high-level semantic features, such as eyes, nose and mouth. We show that, though face appearances vary dramatically, these LVPs are very effective for face image reconstruction. For face recognition, block-based histograms of the LVPs indexes are extracted as the face representation to compare for classification. Primary experiments on FERET face database have shown that the LVP method can achieve encouraging recognition rate","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper proposes a novel simple yet effective generative model based on local visual primitives (LVP) for face modeling and classification. The LVPs, as the pattern of local face region, are learnt by clustering a great number of local patches. Visually, these LVPs correspond to intuitive low-level micro visual structures very well, and they are expected to constitute those high-level semantic features, such as eyes, nose and mouth. We show that, though face appearances vary dramatically, these LVPs are very effective for face image reconstruction. For face recognition, block-based histograms of the LVPs indexes are extracted as the face representation to compare for classification. Primary experiments on FERET face database have shown that the LVP method can achieve encouraging recognition rate
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部视觉原语(LVP)用于人脸建模和识别
提出了一种简单有效的基于局部视觉原语(LVP)的人脸建模与分类生成模型。lvp作为局部人脸区域的模式,是通过对大量的局部斑块进行聚类来学习的。从视觉上看,这些lvp很好地对应了直观的低层次微观视觉结构,它们有望构成那些高层次的语义特征,如眼睛、鼻子和嘴巴。我们表明,尽管面部外观变化很大,但这些lvp对面部图像重建非常有效。在人脸识别中,提取LVPs指标的基于块的直方图作为人脸表示进行比较分类。在FERET人脸数据库上进行的初步实验表明,LVP方法可以取得令人鼓舞的识别率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1