{"title":"Flexible Wireless ECG Circuit Fabrication Technique","authors":"N. Sahar, N. A. Abdul-Kadir, F. K. Che Harun","doi":"10.1109/IBITeC46597.2019.9091725","DOIUrl":null,"url":null,"abstract":"The value of smart medical devices, including heart rate monitors, is forecasted by U.S. Smart Medical Devices to be increased yearly until year 2025. Smartphones play an important role in the healthcare industry, thus, the increase in smartphone usage is in parallel with the rising demand for wireless and smartphone-compatible medical devices. This in turn promotes awareness and focus on health and fitness, and demand-led growth for home usage. There were a few researches related to the methods used in the fabrication of flexible circuits such as screen printing, inkjet printing and direct transfer methods. On top of that, different flexible substrate materials such as paper, plastic (such as Polyethylene terephthalate (PET)), Kapton and textile-fabric were used by researchers to achieve their study objectives. Each method and material used in the previous studies were reviewed to address critical points such as to emphasize the adhesion property of materials as it may affect the quality and reliability of the flexible circuit during and after fabrication process. Thus, the focus of this study is to review a wireless ECG monitoring device which is compact, flexible, and equipped with wireless communication technology.","PeriodicalId":198107,"journal":{"name":"2019 International Biomedical Instrumentation and Technology Conference (IBITeC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Biomedical Instrumentation and Technology Conference (IBITeC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBITeC46597.2019.9091725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The value of smart medical devices, including heart rate monitors, is forecasted by U.S. Smart Medical Devices to be increased yearly until year 2025. Smartphones play an important role in the healthcare industry, thus, the increase in smartphone usage is in parallel with the rising demand for wireless and smartphone-compatible medical devices. This in turn promotes awareness and focus on health and fitness, and demand-led growth for home usage. There were a few researches related to the methods used in the fabrication of flexible circuits such as screen printing, inkjet printing and direct transfer methods. On top of that, different flexible substrate materials such as paper, plastic (such as Polyethylene terephthalate (PET)), Kapton and textile-fabric were used by researchers to achieve their study objectives. Each method and material used in the previous studies were reviewed to address critical points such as to emphasize the adhesion property of materials as it may affect the quality and reliability of the flexible circuit during and after fabrication process. Thus, the focus of this study is to review a wireless ECG monitoring device which is compact, flexible, and equipped with wireless communication technology.