A Methodology for Non-Functional Property Evaluation of Machine Learning Models

M. Anisetti, C. Ardagna, E. Damiani, Paolo G. Panero
{"title":"A Methodology for Non-Functional Property Evaluation of Machine Learning Models","authors":"M. Anisetti, C. Ardagna, E. Damiani, Paolo G. Panero","doi":"10.1145/3415958.3433101","DOIUrl":null,"url":null,"abstract":"The pervasive diffusion of Machine Learning (ML) in many critical domains and application scenarios has revolutionized implementation and working of modern IT systems. The behavior of modern systems often depends on the behavior of ML models, which are treated as black boxes, thus making automated decisions based on inference unpredictable. In this context, there is an increasing need of verifying the non-functional properties of ML models, such as, fairness and privacy, to the aim of providing certified ML-based applications and services. In this paper, we propose a methodology based on Multi-Armed Bandit for evaluating non-functional properties of ML models. Our methodology adopts Thompson sampling, Monte Carlo Simulation, and Value Remaining. An experimental evaluation in a real-world scenario is presented to prove the applicability of our approach in evaluating the fairness of different ML models.","PeriodicalId":198419,"journal":{"name":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415958.3433101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The pervasive diffusion of Machine Learning (ML) in many critical domains and application scenarios has revolutionized implementation and working of modern IT systems. The behavior of modern systems often depends on the behavior of ML models, which are treated as black boxes, thus making automated decisions based on inference unpredictable. In this context, there is an increasing need of verifying the non-functional properties of ML models, such as, fairness and privacy, to the aim of providing certified ML-based applications and services. In this paper, we propose a methodology based on Multi-Armed Bandit for evaluating non-functional properties of ML models. Our methodology adopts Thompson sampling, Monte Carlo Simulation, and Value Remaining. An experimental evaluation in a real-world scenario is presented to prove the applicability of our approach in evaluating the fairness of different ML models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习模型的非功能属性评价方法
机器学习(ML)在许多关键领域和应用场景中的广泛传播已经彻底改变了现代IT系统的实现和工作。现代系统的行为通常依赖于ML模型的行为,这些模型被视为黑盒,因此基于不可预测的推理做出自动决策。在这种情况下,越来越需要验证ML模型的非功能属性,例如公平性和隐私性,以提供经过认证的基于ML的应用程序和服务。在本文中,我们提出了一种基于Multi-Armed Bandit的方法来评估ML模型的非功能属性。我们的方法采用汤普森抽样、蒙特卡罗模拟和价值保留。提出了一个真实场景中的实验评估,以证明我们的方法在评估不同ML模型的公平性方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selection of Information Streams in Social Sensing: an Interdependence- and Cost-aware Ranking Method LEOnto Bot-Detective: An explainable Twitter bot detection service with crowdsourcing functionalities A Novel Framework for Event Interpretation in a Heterogeneous Information System Spatial Information Retrieval in Digital Ecosystems: A Comprehensive Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1