Dantzig selector based compressive sensing for radar image enhancement

S. Mann, R. Phogat, A. Mishra
{"title":"Dantzig selector based compressive sensing for radar image enhancement","authors":"S. Mann, R. Phogat, A. Mishra","doi":"10.1109/INDCON.2010.5712730","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is the technique for acquiring and reconstructing a signal utilizing the apriori knowledge that it is sparse in a certain domain. This paper investigates the application of this technique to radar imaging. Present radar systems operate on high bandwidths and demands high sample rates following the Nyquist-Shannon theorem. Compressive Sensing can prove to be a good alternative to reduce data handling, complexity, weight, power demands and costs of the existing radar systems. There are two major novelties in this work. First of all we have used Dantzig selector based CS which gives better result when applied on radar images than that using the conventional l1-norm based CS. Secondly, we also show that Dantzig selector based CS supresses speckle noise in radar images. We demonstrate the results on both simulated and real radar images.","PeriodicalId":109071,"journal":{"name":"2010 Annual IEEE India Conference (INDICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2010.5712730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Compressive sensing (CS) is the technique for acquiring and reconstructing a signal utilizing the apriori knowledge that it is sparse in a certain domain. This paper investigates the application of this technique to radar imaging. Present radar systems operate on high bandwidths and demands high sample rates following the Nyquist-Shannon theorem. Compressive Sensing can prove to be a good alternative to reduce data handling, complexity, weight, power demands and costs of the existing radar systems. There are two major novelties in this work. First of all we have used Dantzig selector based CS which gives better result when applied on radar images than that using the conventional l1-norm based CS. Secondly, we also show that Dantzig selector based CS supresses speckle noise in radar images. We demonstrate the results on both simulated and real radar images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Dantzig选择器的压缩感知雷达图像增强
压缩感知(CS)是一种利用信号在一定范围内的稀疏先验知识来获取和重构信号的技术。本文研究了该技术在雷达成像中的应用。根据奈奎斯特-香农定理,目前的雷达系统工作在高带宽上,要求高采样率。压缩感知可以证明是一种很好的替代方案,可以减少现有雷达系统的数据处理、复杂性、重量、功率需求和成本。这项工作有两个主要的新奇之处。首先,我们使用了基于Dantzig选择器的CS,该CS在雷达图像上的应用效果优于传统的基于11范数的CS。其次,我们还证明了基于Dantzig选择器的CS可以抑制雷达图像中的散斑噪声。我们在模拟和真实雷达图像上验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient technique for protein classification using feature extraction by artificial neural networks Coordinated design of excitation and TCSC-based stabilizers for multimachine power system Estimation of the resonant frequency and magnetic polarizability of an edge coupled circular split ring resonator with rotated outer ring Realization of ultra wideband bandpass filter using new type of split-ring Defected Ground Structure Double-Pole Four-Throw RF CMOS switch design with double-gate transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1