{"title":"MapRDD","authors":"Zhenyu Li, Stephen Jarvis","doi":"10.1145/3206333.3206335","DOIUrl":null,"url":null,"abstract":"The Resilient Distributed Dataset (RDD) is the core memory abstraction behind the popular data-analytic framework Apache Spark. We present an extension to the Resilient Distributed Dataset for map transformations, that we call MapRDD, which takes advantage of the underlying relations between records in the parent and child datasets, in order to achieve random-access of individual records in a partition. The design is complemented by a new MemoryStore, which manages data sampling and data transfers asynchronously. We use the ImageNet dataset to demonstrate that: (I) The initial data loading phase is redundant and can be completely avoided; (II) Sampling on the CPU can be entirely overlapped with training on the GPU to achieve near full occupancy; (III) CPU processing cycles and memory usage can be reduced by more than 90%, allowing other applications to be run simultaneously; (IV) Constant training step time can be achieved, regardless of the size of the partition, for up to 1.3 million records in our experiments. We expect to obtain the same improvements in other RDD transformations via further research on finer-grained implicit & explicit dataset relations.","PeriodicalId":253916,"journal":{"name":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206333.3206335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Resilient Distributed Dataset (RDD) is the core memory abstraction behind the popular data-analytic framework Apache Spark. We present an extension to the Resilient Distributed Dataset for map transformations, that we call MapRDD, which takes advantage of the underlying relations between records in the parent and child datasets, in order to achieve random-access of individual records in a partition. The design is complemented by a new MemoryStore, which manages data sampling and data transfers asynchronously. We use the ImageNet dataset to demonstrate that: (I) The initial data loading phase is redundant and can be completely avoided; (II) Sampling on the CPU can be entirely overlapped with training on the GPU to achieve near full occupancy; (III) CPU processing cycles and memory usage can be reduced by more than 90%, allowing other applications to be run simultaneously; (IV) Constant training step time can be achieved, regardless of the size of the partition, for up to 1.3 million records in our experiments. We expect to obtain the same improvements in other RDD transformations via further research on finer-grained implicit & explicit dataset relations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latency-conscious dataflow reconfiguration Six Pass MapReduce Implementation of Strassen's Algorithm for Matrix Multiplication Distribution-Aware Stream Partitioning for Distributed Stream Processing Systems FlameStream MapRDD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1