B. Lagemann, T. Seidenberg, C. Jürgenhake, S. O. Erikstad, R. Dumitrescu
{"title":"System alternatives for modular, zero-emission high-speed ferries","authors":"B. Lagemann, T. Seidenberg, C. Jürgenhake, S. O. Erikstad, R. Dumitrescu","doi":"10.5957/fast-2021-054","DOIUrl":null,"url":null,"abstract":"Low emission requirements exert increasing influence upon ship design. The large variety of technological options makes selecting systems during the conceptual design phase a difficult endeavor. To compare different solutions, we need to be able to exchange individual systems and directly evaluate their impact on the design’s economic and environmental performance. Based on the idea of model-based systems engineering, we present a modular synthesis approach for ship systems. The modules are coupled to a discrete event simulation and allow for a case-based assessment of system configurations. We apply this method to a high-speed passenger ferry and show how it can provide decision support for hydrogen- and battery-based system architectures.","PeriodicalId":422348,"journal":{"name":"Day 2 Wed, October 27, 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 27, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/fast-2021-054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Low emission requirements exert increasing influence upon ship design. The large variety of technological options makes selecting systems during the conceptual design phase a difficult endeavor. To compare different solutions, we need to be able to exchange individual systems and directly evaluate their impact on the design’s economic and environmental performance. Based on the idea of model-based systems engineering, we present a modular synthesis approach for ship systems. The modules are coupled to a discrete event simulation and allow for a case-based assessment of system configurations. We apply this method to a high-speed passenger ferry and show how it can provide decision support for hydrogen- and battery-based system architectures.