J. Ledy, H. Boeglen, A. Poussard, B. Hilt, R. Vauzelle
{"title":"A Semi-Deterministic Channel Model for VANETs Simulations","authors":"J. Ledy, H. Boeglen, A. Poussard, B. Hilt, R. Vauzelle","doi":"10.1155/2012/492105","DOIUrl":null,"url":null,"abstract":"Today's advanced simulators facilitate thorough studies on Vehicular Ad hoc NETworks (VANETs). However the choice of the physical layer model in such simulators is a crucial issue that impacts the results. A solution to this challenge might be found with a hybrid model. In this paper, we propose a semi-deterministic channel propagation model for VANETs called UM-CRT. It is based on CRT (Communication Ray Tracer) and SCME—UM (Spatial Channel Model Extended—Urban Micro) which are, respectively, a deterministic channel simulator and a statistical channel model. It uses a process which adjusts the statistical model using relevant parameters obtained from the deterministic simulator. To evaluate realistic VANET transmissions, we have integrated our hybrid model in fully compliant 802.11 p and 802.11 n physical layers. This framework is then used with the NS-2 network simulator. Our simulation results show that UM-CRT is adapted for VANETs simulations in urban areas as it gives a good approximation of realistic channel propagation mechanisms while improving significantly simulation time.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/492105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Today's advanced simulators facilitate thorough studies on Vehicular Ad hoc NETworks (VANETs). However the choice of the physical layer model in such simulators is a crucial issue that impacts the results. A solution to this challenge might be found with a hybrid model. In this paper, we propose a semi-deterministic channel propagation model for VANETs called UM-CRT. It is based on CRT (Communication Ray Tracer) and SCME—UM (Spatial Channel Model Extended—Urban Micro) which are, respectively, a deterministic channel simulator and a statistical channel model. It uses a process which adjusts the statistical model using relevant parameters obtained from the deterministic simulator. To evaluate realistic VANET transmissions, we have integrated our hybrid model in fully compliant 802.11 p and 802.11 n physical layers. This framework is then used with the NS-2 network simulator. Our simulation results show that UM-CRT is adapted for VANETs simulations in urban areas as it gives a good approximation of realistic channel propagation mechanisms while improving significantly simulation time.