Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction

Mamluatul Hani’ah, Moch. Zawaruddin Abdullah, W. I. Sabilla, Syafaat Akbar, Dikky Rahmad Shafara
{"title":"Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction","authors":"Mamluatul Hani’ah, Moch. Zawaruddin Abdullah, W. I. Sabilla, Syafaat Akbar, Dikky Rahmad Shafara","doi":"10.30812/matrik.v22i2.2287","DOIUrl":null,"url":null,"abstract":"The stock market often attracts investors to invest, but it is not uncommon for investors to experience losses when buying and selling shares. This causes investors to hesitate to determine when to sell or buy shares in the stock market. The accurate stock price prediction will help investors to decide when to buy or sell their shares. In this study, we propose a new approach to predicting stocks using machine learning with a combination of features from stock price features, technical indicators, and Google trends data. Three well-known machine learning algorithms such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Multiple Linear regression are used to predict future stock prices. The test results show that the SVR outperformed the MLP and Multiple Linear Regression to predict stock prices for Indonesian stocks with an average MAPE is 0.50%. The SVR can predict the stock price close to the actual price.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i2.2287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stock market often attracts investors to invest, but it is not uncommon for investors to experience losses when buying and selling shares. This causes investors to hesitate to determine when to sell or buy shares in the stock market. The accurate stock price prediction will help investors to decide when to buy or sell their shares. In this study, we propose a new approach to predicting stocks using machine learning with a combination of features from stock price features, technical indicators, and Google trends data. Three well-known machine learning algorithms such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Multiple Linear regression are used to predict future stock prices. The test results show that the SVR outperformed the MLP and Multiple Linear Regression to predict stock prices for Indonesian stocks with an average MAPE is 0.50%. The SVR can predict the stock price close to the actual price.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于谷歌趋势和技术指标的机器学习股票市场预测
股票市场经常吸引投资者投资,但投资者在买卖股票时遭受损失并不罕见。这导致投资者在决定何时卖出或买入股票时犹豫不决。准确的股价预测将帮助投资者决定何时买入或卖出他们的股票。在这项研究中,我们提出了一种利用机器学习结合股票价格特征、技术指标和谷歌趋势数据的特征来预测股票的新方法。三种著名的机器学习算法,如支持向量回归(SVR)、多层感知器(MLP)和多元线性回归,被用来预测未来的股票价格。检验结果表明,对于平均MAPE为0.50%的印尼股票,SVR在预测股价方面优于MLP和多元线性回归。SVR可以预测接近实际价格的股票价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1