A Hybrid Machine Learning Approach in Predicting E-Commerce Supply Chain Risks

N. M. Tuan, Huynh Thi Khanh Chi, N. Hop
{"title":"A Hybrid Machine Learning Approach in Predicting E-Commerce Supply Chain Risks","authors":"N. M. Tuan, Huynh Thi Khanh Chi, N. Hop","doi":"10.1109/KSE56063.2022.9953787","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to propose a hybrid machine learning approach using a so-called Cost-Complexity Pruning Decision Trees algorithm in predicting supply chain risks, particularly, delayed deliveries. The Recursive Feature Elimination with Cross-Validation solution is designed to improve the feature selection function of the Decision Trees classifier. Then, the Two-Phase Cost-Complexity Pruning technique is developed to reduce the overfitting of the tree-based algorithms. A case study of an e-commerce enabler in Vietnam is investigated to illustrate the efficiency of the proposed models. The obtained results show promise in terms of predictive performance.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"1690 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to propose a hybrid machine learning approach using a so-called Cost-Complexity Pruning Decision Trees algorithm in predicting supply chain risks, particularly, delayed deliveries. The Recursive Feature Elimination with Cross-Validation solution is designed to improve the feature selection function of the Decision Trees classifier. Then, the Two-Phase Cost-Complexity Pruning technique is developed to reduce the overfitting of the tree-based algorithms. A case study of an e-commerce enabler in Vietnam is investigated to illustrate the efficiency of the proposed models. The obtained results show promise in terms of predictive performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测电子商务供应链风险的混合机器学习方法
本文的目的是提出一种混合机器学习方法,使用所谓的成本复杂性修剪决策树算法来预测供应链风险,特别是延迟交付。为了改进决策树分类器的特征选择功能,设计了具有交叉验证的递归特征消除方法。然后,提出了两阶段成本-复杂度修剪技术,以减少基于树的算法的过拟合。本文以越南的一个电子商务推动者为例,说明了所提出模型的有效性。所得结果在预测性能方面显示出良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWEN: A novel method for accurate estimation of cell type compositions from bulk data samples Polygenic risk scores adaptation for Height in a Vietnamese population Sentiment Classification for Beauty-fashion Reviews An Automated Stub Method for Unit Testing C/C++ Projects Knowledge-based Problem Solving and Reasoning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1