Fine-Grained Scalable Video Caching

Qiushi Gong, J. Woods, K. Kar, Jacob Chakareski
{"title":"Fine-Grained Scalable Video Caching","authors":"Qiushi Gong, J. Woods, K. Kar, Jacob Chakareski","doi":"10.1109/ISM.2015.81","DOIUrl":null,"url":null,"abstract":"Caching has been shown to enhance network performance. In this paper, we study fine-grain scalable video caching. We start from a single cache scenario by providing a solution to the caching allocation problem that optimizes the average expected video quality for the most popular video clips. Actual trace data is applied to verify the performance of our algorithm and compare its backhaul link bandwidth consumption relative to non-scalable video caching. In addition, we extend our analysis to collaborative caching and integrate network coding for further transmission efficiency. Our experimental results demonstrate considerable performance enhancement.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Caching has been shown to enhance network performance. In this paper, we study fine-grain scalable video caching. We start from a single cache scenario by providing a solution to the caching allocation problem that optimizes the average expected video quality for the most popular video clips. Actual trace data is applied to verify the performance of our algorithm and compare its backhaul link bandwidth consumption relative to non-scalable video caching. In addition, we extend our analysis to collaborative caching and integrate network coding for further transmission efficiency. Our experimental results demonstrate considerable performance enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细粒度可扩展的视频缓存
缓存已被证明可以提高网络性能。本文主要研究细粒度可扩展视频缓存技术。我们从单个缓存场景开始,提供了一个缓存分配问题的解决方案,该解决方案优化了最受欢迎的视频剪辑的平均预期视频质量。实际跟踪数据应用于验证我们的算法的性能,并比较其回程链路带宽消耗相对于不可扩展的视频缓存。此外,我们将我们的分析扩展到协作缓存和集成网络编码,以进一步提高传输效率。我们的实验结果显示了相当大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1