{"title":"Analytic reliability evaluation for fault-tolerant circuit structures on FPGAs","authors":"J. Anwer, M. Platzner","doi":"10.1109/DFT.2014.6962108","DOIUrl":null,"url":null,"abstract":"With increasing error-proneness of nano-circuits, a number of fault-tolerance approaches are presented in the literature to enhance circuit reliability. The evaluation of the effectiveness of fault-tolerant circuit structures remains a challenge. An analytical model is required to provide exact figures of reliability of a circuit design, to be able to locate error-sensitive parts of the circuit as well as to compare different fault-tolerance approaches. At the logic layer, probabilistic approaches exist that provide such measures of circuit reliability, but they do not consider the reliability-enhancement effect of fault-tolerant circuit structures. Furthermore, these approaches are often not applicable for large circuits and their complexity hinders the development of generic simulation tools. In this paper we combine the Boolean difference error calculator (BDEC), a previous probabilistic reliability model for hardware designs, with a reliability model for fault-tolerant circuit structures. As a result we are able to study the reliability of fault-tolerant circuit structures at the logic layer. We focus on fault-tolerant circuits to be implemented in FPGAs and show how to extend our combined model from combinational to sequential circuits. For analyzing larger circuits, we develop a MATLAB-based tool utilizing BDEC. With this tool, we perform a variability analysis of different input parameters, such as logic component, input and voter error probabilities, to observe their single and joint effect on the circuit reliability. Our analyses show that circuit reliability depends strongly on the circuit structure due to error-masking effects of components on each other. Moreover, the benefit of redundancy can be obtained up to a certain threshold of component, input and voter error probabilities though the voter reliability has the strongest impact on overall circuit reliability.","PeriodicalId":414665,"journal":{"name":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2014.6962108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
With increasing error-proneness of nano-circuits, a number of fault-tolerance approaches are presented in the literature to enhance circuit reliability. The evaluation of the effectiveness of fault-tolerant circuit structures remains a challenge. An analytical model is required to provide exact figures of reliability of a circuit design, to be able to locate error-sensitive parts of the circuit as well as to compare different fault-tolerance approaches. At the logic layer, probabilistic approaches exist that provide such measures of circuit reliability, but they do not consider the reliability-enhancement effect of fault-tolerant circuit structures. Furthermore, these approaches are often not applicable for large circuits and their complexity hinders the development of generic simulation tools. In this paper we combine the Boolean difference error calculator (BDEC), a previous probabilistic reliability model for hardware designs, with a reliability model for fault-tolerant circuit structures. As a result we are able to study the reliability of fault-tolerant circuit structures at the logic layer. We focus on fault-tolerant circuits to be implemented in FPGAs and show how to extend our combined model from combinational to sequential circuits. For analyzing larger circuits, we develop a MATLAB-based tool utilizing BDEC. With this tool, we perform a variability analysis of different input parameters, such as logic component, input and voter error probabilities, to observe their single and joint effect on the circuit reliability. Our analyses show that circuit reliability depends strongly on the circuit structure due to error-masking effects of components on each other. Moreover, the benefit of redundancy can be obtained up to a certain threshold of component, input and voter error probabilities though the voter reliability has the strongest impact on overall circuit reliability.