Convolutive Blind Source Separation Using Fourier Kalman Filtering

Sabita Langkam, A. K. Deb
{"title":"Convolutive Blind Source Separation Using Fourier Kalman Filtering","authors":"Sabita Langkam, A. K. Deb","doi":"10.1109/AMS.2017.27","DOIUrl":null,"url":null,"abstract":"In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于傅立叶卡尔曼滤波的卷积盲源分离
提出了一种用于信号卷积盲源分离(CBSS)的频域方法。将卷积混合模型重新表述为随机状态空间模型并在频域中定义时,其状态和参数都是未知的。该问题的解决需要采用对偶估计方法来恢复原始信号。本文采用的对偶估计方法是使用状态-空间-频域卡尔曼滤波器同时运行一对状态和参数滤波器来估计未知参数和状态。仿真结果表明了该方法的有效性,并与已有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Simulation of an Arbitrary Acoustical Field in Rooms Battery-Free and Energy-Effective RFID Sensor Tag for Health Monitoring in Smart Grid Assessment of Spinal Cord Injury via Sparse Modeling of Somatosensory Evoked Potential Signals Performance of Frequency Estimation Techniques with Phase Noise in mm-Wave Based 5G Systems Frontier Exploration Technique for 3D Autonomous SLAM Using K-Means Based Divisive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1