{"title":"Convolutive Blind Source Separation Using Fourier Kalman Filtering","authors":"Sabita Langkam, A. K. Deb","doi":"10.1109/AMS.2017.27","DOIUrl":null,"url":null,"abstract":"In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.