Innovation Analysis

Paul I. Louangrath
{"title":"Innovation Analysis","authors":"Paul I. Louangrath","doi":"10.2139/ssrn.2266998","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to define innovation and to proffer evidence of its existence through the use of statistical method and mathematical modeling. Innovation is defined by the confidence interval of the normal probability distribution density where μ ± 2σ = 0.95 leaving a room of ±α = 0.05 for randomness. This paper claims that the upper tail of the probability distribution density curve ( α = 0.025) is an area of focus for innovation analysis. The lower tail of the curve: −α = −0.025 is a random area that is not a subject of innovation analysis. The paper employs series of tests to determine and verify innovation. Two situations are presented. On the one hand, innovation is tested by comparing the claimed output change against the industry referenced mean. On the other, innovation may also be proven where there is no external reference. Vouching and tracing analyses are used where there is an industry reference indicator. Absent such an external reference indicator, the Dixon outliers test is used.","PeriodicalId":346559,"journal":{"name":"Innovation Measurement & Indicators eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovation Measurement & Indicators eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2266998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to define innovation and to proffer evidence of its existence through the use of statistical method and mathematical modeling. Innovation is defined by the confidence interval of the normal probability distribution density where μ ± 2σ = 0.95 leaving a room of ±α = 0.05 for randomness. This paper claims that the upper tail of the probability distribution density curve ( α = 0.025) is an area of focus for innovation analysis. The lower tail of the curve: −α = −0.025 is a random area that is not a subject of innovation analysis. The paper employs series of tests to determine and verify innovation. Two situations are presented. On the one hand, innovation is tested by comparing the claimed output change against the industry referenced mean. On the other, innovation may also be proven where there is no external reference. Vouching and tracing analyses are used where there is an industry reference indicator. Absent such an external reference indicator, the Dixon outliers test is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创新分析
本文的目的是通过使用统计方法和数学建模来定义创新并提供其存在的证据。创新定义为正态概率分布密度的置信区间,其中μ±2σ = 0.95,随机系数为±α = 0.05。本文认为概率分布密度曲线的上尾(α = 0.025)是创新分析的重点区域。曲线的下尾:−α =−0.025是一个随机区域,不是创新分析的主题。本文采用一系列的测试来确定和验证创新。提出了两种情况。一方面,通过将声称的产出变化与行业参考平均值进行比较来检验创新。另一方面,创新也可以在没有外部参考的地方得到证明。在有行业参考指标的地方使用凭证和跟踪分析。如果没有这样的外部参考指标,则使用Dixon异常值检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disregarding the Shoulders of Giants: Inferences from Innovation Research Exploration and Exploitation in US Technological Change The Arms Race of Models: Complexify or Die Destabilization and Consolidation: Conceptualizing, Measuring, and Validating the Dual Characteristics of Technology Patent Classification Systems and Technological Categorization: An Overview and Data Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1