{"title":"A Theory AB Toolbox","authors":"Marco Gaboardi, Justin Hsu","doi":"10.4230/LIPIcs.SNAPL.2015.129","DOIUrl":null,"url":null,"abstract":"Randomized algorithms are a staple of the theoretical computer science literature. By careful use of randomness, algorithms can achieve properties that are simply not possible with deterministic algorithms. Today, these properties are proved on paper, by theoretical computer scientists; we investigate formally verifying these proofs. \n \nThe main challenges are two: proofs about algorithms can be quite complex, using various facts from probability theory; and proofs are highly customized - two proofs of the same property for two algorithms can be completely different. To overcome these challenges, we propose taking inspiration from paper proofs, by building common tools - abstractions, reasoning principles, perhaps even notations - into a formal verification toolbox. To give an idea of our approach, we consider three common patterns in paper proofs: the union bound, concentration bounds, and martingale arguments.","PeriodicalId":231548,"journal":{"name":"Summit on Advances in Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on Advances in Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SNAPL.2015.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Randomized algorithms are a staple of the theoretical computer science literature. By careful use of randomness, algorithms can achieve properties that are simply not possible with deterministic algorithms. Today, these properties are proved on paper, by theoretical computer scientists; we investigate formally verifying these proofs.
The main challenges are two: proofs about algorithms can be quite complex, using various facts from probability theory; and proofs are highly customized - two proofs of the same property for two algorithms can be completely different. To overcome these challenges, we propose taking inspiration from paper proofs, by building common tools - abstractions, reasoning principles, perhaps even notations - into a formal verification toolbox. To give an idea of our approach, we consider three common patterns in paper proofs: the union bound, concentration bounds, and martingale arguments.