Parametric mapping of neural networks to fine-grained FPGAs

V. Groza, B. Noory
{"title":"Parametric mapping of neural networks to fine-grained FPGAs","authors":"V. Groza, B. Noory","doi":"10.1109/SCS.2003.1227109","DOIUrl":null,"url":null,"abstract":"Steady FPGA density and speed improvement in recent years has paved the path for realization of larger Neural Networks On a Programmable Chip (NNOPC), a high performance and low cost alternative to traditional physical implementations of artificial neural networks. In this paper, we propose a parametric approach for mapping artificial neural networks onto FPGA structures, as well as an optimization method to reduce area requirements of the synthesized hardware. Applying this method to a sample neuron, we achieved a 30% reduction in hardware resource requirements of the synaptic multiplier.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Steady FPGA density and speed improvement in recent years has paved the path for realization of larger Neural Networks On a Programmable Chip (NNOPC), a high performance and low cost alternative to traditional physical implementations of artificial neural networks. In this paper, we propose a parametric approach for mapping artificial neural networks onto FPGA structures, as well as an optimization method to reduce area requirements of the synthesized hardware. Applying this method to a sample neuron, we achieved a 30% reduction in hardware resource requirements of the synaptic multiplier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络到细粒度fpga的参数映射
近年来,稳定的FPGA密度和速度的提高为在可编程芯片(NNOPC)上实现更大的神经网络铺平了道路,这是传统物理实现人工神经网络的高性能和低成本替代方案。在本文中,我们提出了一种将人工神经网络映射到FPGA结构的参数化方法,以及一种减少合成硬件面积要求的优化方法。将此方法应用于样本神经元,我们实现了突触乘法器硬件资源需求减少30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm based dynamic channel assignment for cellular radio networks Voltage controlled integrators/differentiators using current feedback amplifier A low noise-high counting rate readout system for X-ray imaging applications Implementation of 3D-DCT based video encoder/decoder system Periodic chaotic spreading sequences with better correlation properties than conventional sequences - BER performances analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1