Multiple rewards fuzzy reinforcement learning algorithm in RoboCup environment

Li Shi, Yao Jinyi, Ye Zhen, S. Zeng-qi
{"title":"Multiple rewards fuzzy reinforcement learning algorithm in RoboCup environment","authors":"Li Shi, Yao Jinyi, Ye Zhen, S. Zeng-qi","doi":"10.1109/CCA.2001.973884","DOIUrl":null,"url":null,"abstract":"In order to achieve the competition tasks for multicooperating robots through learning, the paper discusses a kind of method that is designed for multi-agent systems (MAS), called the multi-reward fuzzy Q-learning algorithm (MRFQLA), which can be applied to the environment of the Robot World Cup Tournament (RoboCup). In MRFQLA., multiple reinforcement functions are established, based on the different characters of multi-agent systems. When the learning robot executes an action, these functions create multiple reinforcement signals that give the criteria of this action from different points of view. A Takagi-Sugeno (TS) model of a fuzzy inference system is built, which integrates these multiple rewards into one signal as the feedback of the learning robot. This method enhances the efficiency of learning because multiple rewards increase TD error and eliminates the conflict between the short-term target and the long-term one. Computer simulations in the RoboCup environment are shown and a discussion is given.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to achieve the competition tasks for multicooperating robots through learning, the paper discusses a kind of method that is designed for multi-agent systems (MAS), called the multi-reward fuzzy Q-learning algorithm (MRFQLA), which can be applied to the environment of the Robot World Cup Tournament (RoboCup). In MRFQLA., multiple reinforcement functions are established, based on the different characters of multi-agent systems. When the learning robot executes an action, these functions create multiple reinforcement signals that give the criteria of this action from different points of view. A Takagi-Sugeno (TS) model of a fuzzy inference system is built, which integrates these multiple rewards into one signal as the feedback of the learning robot. This method enhances the efficiency of learning because multiple rewards increase TD error and eliminates the conflict between the short-term target and the long-term one. Computer simulations in the RoboCup environment are shown and a discussion is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人世界杯环境下的多奖励模糊强化学习算法
为了通过学习来完成多协作机器人的比赛任务,本文讨论了一种为多智能体系统(MAS)设计的方法,称为多奖励模糊q -学习算法(MRFQLA),该算法可应用于机器人世界杯(RoboCup)的环境。在MRFQLA。,根据多智能体系统的不同特点,建立了多个强化函数。当学习机器人执行一个动作时,这些函数会产生多个强化信号,从不同的角度给出这个动作的标准。建立了一个模糊推理系统的Takagi-Sugeno (TS)模型,该模型将这些多个奖励集成为一个信号,作为学习机器人的反馈。该方法提高了学习效率,因为多个奖励增加了TD误差,消除了短期目标与长期目标之间的冲突。给出了机器人世界杯环境下的计算机模拟,并对此进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pay-load estimation of a 2DOF flexible link robot using a delta-operator technique A mechatronics library for SIMULINK An adaptive sliding observer for sensorless control of synchronous motors Position and orientation estimation based on Kalman filtering of stereo images Quasi-unknown input observers for linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1