A SYSTEMATIC REVIEW ON TEXT SUMMARIZATION OF MEDICAL RESEARCH ARTICLES

A. Ibrahim, Marco Alfonse, M. Aref
{"title":"A SYSTEMATIC REVIEW ON TEXT SUMMARIZATION OF MEDICAL RESEARCH ARTICLES","authors":"A. Ibrahim, Marco Alfonse, M. Aref","doi":"10.21608/ijicis.2023.190004.1252","DOIUrl":null,"url":null,"abstract":": The term \"Medical Text summarization\" refers to the process of extracting or collecting more useful information from medical articles in a concise manner. Every day, the count of medical publications increases continuously, and applying text summarization techniques can minimize the time needed to manually transform medical papers into a summarized version. This study's goal is to present a summary of recent works in medical text summarization from 2018 to 2022. It includes 15 papers covering different methodologies such as Clinical Context-Aware (CCA), Prognosis Quality Recognition (PQR), Bidirectional Encoder Representations From Transformers (BERT), Generative Adversarial Networks (GAN), Recurrent Neural Network (RNN), and Sequence-To-Sequence (seq-2-seq) model. Also, the paper describes the newest datasets (PubMed, arXiv, SUMPUBMED, Evidence-Based Medicine Summarization, COVID-19 Open Research, BioMed Central, Clinical Context-Aware, Biomedical Relation Extraction Dataset, Semantic Scholar Open Research Corpus, and Prognosis Quality Recognition) and evaluation metrics (Recall-Oriented Understudy for Gisting Evaluation (ROUGE), F1 Metric, Bilingual Evaluation Understudy (BLEU), BERTScore (BS), and Accuracy) used in medical text summarization.","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2023.190004.1252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The term "Medical Text summarization" refers to the process of extracting or collecting more useful information from medical articles in a concise manner. Every day, the count of medical publications increases continuously, and applying text summarization techniques can minimize the time needed to manually transform medical papers into a summarized version. This study's goal is to present a summary of recent works in medical text summarization from 2018 to 2022. It includes 15 papers covering different methodologies such as Clinical Context-Aware (CCA), Prognosis Quality Recognition (PQR), Bidirectional Encoder Representations From Transformers (BERT), Generative Adversarial Networks (GAN), Recurrent Neural Network (RNN), and Sequence-To-Sequence (seq-2-seq) model. Also, the paper describes the newest datasets (PubMed, arXiv, SUMPUBMED, Evidence-Based Medicine Summarization, COVID-19 Open Research, BioMed Central, Clinical Context-Aware, Biomedical Relation Extraction Dataset, Semantic Scholar Open Research Corpus, and Prognosis Quality Recognition) and evaluation metrics (Recall-Oriented Understudy for Gisting Evaluation (ROUGE), F1 Metric, Bilingual Evaluation Understudy (BLEU), BERTScore (BS), and Accuracy) used in medical text summarization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学研究论文摘要的系统综述
医学文献摘要是指以简洁的方式从医学文献中提取或收集更多有用信息的过程。每天,医学出版物的数量不断增加,应用文本摘要技术可以最大限度地减少人工将医学论文转换为摘要版本所需的时间。本研究的目的是对2018年至2022年医学文本摘要的最新工作进行总结。它包括15篇论文,涵盖了不同的方法,如临床上下文感知(CCA)、预后质量识别(PQR)、变形器双向编码器表示(BERT)、生成对抗网络(GAN)、循环神经网络(RNN)和序列到序列(seq-2-seq)模型。此外,本文还介绍了用于医学文本摘要的最新数据集(PubMed、arXiv、SUMPUBMED、循证医学摘要、COVID-19开放研究、BioMed Central、临床上下文感知、生物医学关系提取数据集、语义学者开放研究语料库和预后质量识别)和评估指标(面向回忆的注册评估替代研究(ROUGE)、F1 Metric、双语评估替代研究(BLEU)、BERTScore (BS)和Accuracy)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPARATIVE STUDY ON REINFORCEMENT LEARNING BASED VISUAL DIALOG SYSTEMS Innovation initiative of Egyptian E-government system by using Big Data ONTOLOGY-DRIVEN CONCEPTUAL MODEL AND DOMAIN ONTOLOGY FOR EGYPTIAN E-GOVERNMENT LOWER LIMB SEMG DENOISING USING DAUBECHIES WAVELETS Survey of Liver Fibrosis Prediction Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1