A COMPARATIVE STUDY ON REINFORCEMENT LEARNING BASED VISUAL DIALOG SYSTEMS

Ghada M. Elshamy, M. Alfonse, Islam M. Hegazy, Mostafa M. Aref
{"title":"A COMPARATIVE STUDY ON REINFORCEMENT LEARNING BASED VISUAL DIALOG SYSTEMS","authors":"Ghada M. Elshamy, M. Alfonse, Islam M. Hegazy, Mostafa M. Aref","doi":"10.21608/ijicis.2024.295310.1339","DOIUrl":null,"url":null,"abstract":": Recently the conjunction between vision and language has created many intersecting tasks as visual question-answering systems, image captioning, etc. Specifically, dialog systems that depend on a visual scene play an important role in improving human-computer interaction technology. At the same time, reinforcement learning has emerged as a very successful paradigm for a variety of machine learning tasks, especially those tasks that aim to develop smart and humanoid machines. In this paper, we show how reinforcement learning is applied to conversational agents to build a powerful visual dialog agent. Visual Dialog task requires the agent to have a meaningful conversation about visual content in natural language. For a given image, its caption, dialog history (question/answer pairs)","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2024.295310.1339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Recently the conjunction between vision and language has created many intersecting tasks as visual question-answering systems, image captioning, etc. Specifically, dialog systems that depend on a visual scene play an important role in improving human-computer interaction technology. At the same time, reinforcement learning has emerged as a very successful paradigm for a variety of machine learning tasks, especially those tasks that aim to develop smart and humanoid machines. In this paper, we show how reinforcement learning is applied to conversational agents to build a powerful visual dialog agent. Visual Dialog task requires the agent to have a meaningful conversation about visual content in natural language. For a given image, its caption, dialog history (question/answer pairs)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的视觉对话系统比较研究
:近来,视觉与语言的结合产生了许多交叉任务,如视觉问题解答系统、图像字幕等。具体来说,依赖视觉场景的对话系统在改进人机交互技术方面发挥着重要作用。与此同时,强化学习已成为各种机器学习任务(尤其是那些旨在开发智能机器和仿人机器的任务)的一个非常成功的范例。在本文中,我们展示了如何将强化学习应用到对话代理中,从而建立一个强大的可视化对话代理。视觉对话任务要求代理用自然语言就视觉内容进行有意义的对话。对于给定的图像、标题、对话历史(问题/答案对)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPARATIVE STUDY ON REINFORCEMENT LEARNING BASED VISUAL DIALOG SYSTEMS Innovation initiative of Egyptian E-government system by using Big Data ONTOLOGY-DRIVEN CONCEPTUAL MODEL AND DOMAIN ONTOLOGY FOR EGYPTIAN E-GOVERNMENT LOWER LIMB SEMG DENOISING USING DAUBECHIES WAVELETS Survey of Liver Fibrosis Prediction Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1