3D model retrieval using linear prediction coding descriptor

V. Mehrdad, H. Ebrahimnezhad
{"title":"3D model retrieval using linear prediction coding descriptor","authors":"V. Mehrdad, H. Ebrahimnezhad","doi":"10.1109/IRANIANCEE.2012.6292448","DOIUrl":null,"url":null,"abstract":"This paper presents the usage of linear prediction coding (LPC) coefficients as descriptor for 3D shape retrieval. In this approach, early shape is projected to the lateral surface of a cylinder parallel to main principal axes and centered at the centroid of the 3D object. For each projected shape, we extract the two-dimensional linear prediction coding coefficients. Rotation normalization is performed by employing the principal component analysis. Resulting descriptor is robust against rotation, translation and scaling. Experimental results demonstrate the effectiveness of the proposed descriptor compared with other methods.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the usage of linear prediction coding (LPC) coefficients as descriptor for 3D shape retrieval. In this approach, early shape is projected to the lateral surface of a cylinder parallel to main principal axes and centered at the centroid of the 3D object. For each projected shape, we extract the two-dimensional linear prediction coding coefficients. Rotation normalization is performed by employing the principal component analysis. Resulting descriptor is robust against rotation, translation and scaling. Experimental results demonstrate the effectiveness of the proposed descriptor compared with other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性预测编码描述符的三维模型检索
提出了将线性预测编码(LPC)系数作为三维形状检索描述符的方法。在这种方法中,早期形状被投射到平行于主轴的圆柱体的侧面,并以3D物体的质心为中心。对于每个投影形状,我们提取二维线性预测编码系数。旋转归一化是通过主成分分析来实现的。生成的描述符对旋转、平移和缩放具有鲁棒性。实验结果证明了该描述符与其他方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision Time-domain MoM for the scattering analysis of thin-wire structures within a ground using band-limited Second-Order Lagrange temporal basis functions Variable-structure position control-a class of fast and robust controllers for synchronous reluctance motor drives Analysis of corona effect on lightning performance of HV overhead transmission line using ATP/EMTP Font recognition using Variogram fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1