Augmented reality display of neurosurgery craniotomy lesions based on feature contour matching

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2021-05-21 DOI:10.1049/ccs2.12021
Hao Zhang, Qi-Yuan Sun, Zhen-Zhong Liu
{"title":"Augmented reality display of neurosurgery craniotomy lesions based on feature contour matching","authors":"Hao Zhang,&nbsp;Qi-Yuan Sun,&nbsp;Zhen-Zhong Liu","doi":"10.1049/ccs2.12021","DOIUrl":null,"url":null,"abstract":"<p>Traditional neurosurgical craniotomy primarily uses two-dimensional cranial medical images to estimate the location of a patient’s intracranial lesions. Such work relies on the experience and skills of the doctor and may result in accidental injury to important intracranial physiological tissues. To help doctors more intuitively determine patient lesion information and improve the accuracy of surgical route formulation and craniotomy safety, an augmented reality method for displaying neurosurgery craniotomy lesions based on feature contour matching is proposed. This method uses threshold segmentation and region growing algorithms to reconstruct a 3-D Computed tomography image of the patient’s head. The augmented reality engine is used to adjust the reconstruction model’s relevant parameters to meet the doctor’s requirements and determine the augmented reality matching method for feature contour matching. By using the mobile terminal to align the real skull model, the virtual lesion model is displayed. Using the designed user interface, doctors can view the patient’s personal information and can zoom in, zoom out, and rotate the virtual model. Therefore, the patient’s lesions information can be visualized accurately, which provides a visual basis for preoperative preparation.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional neurosurgical craniotomy primarily uses two-dimensional cranial medical images to estimate the location of a patient’s intracranial lesions. Such work relies on the experience and skills of the doctor and may result in accidental injury to important intracranial physiological tissues. To help doctors more intuitively determine patient lesion information and improve the accuracy of surgical route formulation and craniotomy safety, an augmented reality method for displaying neurosurgery craniotomy lesions based on feature contour matching is proposed. This method uses threshold segmentation and region growing algorithms to reconstruct a 3-D Computed tomography image of the patient’s head. The augmented reality engine is used to adjust the reconstruction model’s relevant parameters to meet the doctor’s requirements and determine the augmented reality matching method for feature contour matching. By using the mobile terminal to align the real skull model, the virtual lesion model is displayed. Using the designed user interface, doctors can view the patient’s personal information and can zoom in, zoom out, and rotate the virtual model. Therefore, the patient’s lesions information can be visualized accurately, which provides a visual basis for preoperative preparation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征轮廓匹配的神经外科开颅病变增强现实显示
传统的神经外科开颅术主要使用二维颅医学图像来估计患者颅内病变的位置。这种工作依赖于医生的经验和技能,并可能导致颅内重要生理组织的意外损伤。为了帮助医生更直观地判断患者病变信息,提高手术路径制定的准确性和开颅安全性,提出了一种基于特征轮廓匹配的增强现实神经外科开颅病变显示方法。该方法使用阈值分割和区域增长算法重建患者头部的三维计算机断层图像。利用增强现实引擎调整重建模型的相关参数以满足医生的要求,并确定增强现实匹配方法进行特征轮廓匹配。通过移动终端对真实颅骨模型进行对齐,显示虚拟病变模型。通过设计的用户界面,医生可以查看患者的个人信息,并可以放大、缩小和旋转虚拟模型。因此,可以准确地可视化患者的病变信息,为术前准备提供视觉依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1