Modelling Full Tensor Permeability in Fractured Carbonates Using Advanced Discretization Schemes

A. S. Abd, N. Zhang, A. Abushaikha
{"title":"Modelling Full Tensor Permeability in Fractured Carbonates Using Advanced Discretization Schemes","authors":"A. S. Abd, N. Zhang, A. Abushaikha","doi":"10.3997/2214-4609.201903120","DOIUrl":null,"url":null,"abstract":"Summary Naturally fractured reservoirs (NFR’s) present complex physical flow conditions and form the vast majority of oil and gas reserves in the world, and exhibit complex flow regimes that prove to be challenging in reservoir modelling. In this work, we present the efficiency of utilizing a Mimetic Finite Difference based simulator for discrete fractures to predict hydrocarbon recovery when full tensor permeability is used. The results shed the light on the importance of mapping and realistically representing the highly heterogeneous porous media in the reservoir simulation using full tensor permeability. The orientation of the tensor will help accurately mimic the field conditions for oil flow. Moreover, this approach is powerful and can yield accurate results for hydrocarbon recovery, yet needs to be treated with care. The choice of the rotation axis and the angle for the full tensor permeability construction will greatly affect the flow in fractures and will result in early water breakthrough times in some cases.","PeriodicalId":237705,"journal":{"name":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201903120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary Naturally fractured reservoirs (NFR’s) present complex physical flow conditions and form the vast majority of oil and gas reserves in the world, and exhibit complex flow regimes that prove to be challenging in reservoir modelling. In this work, we present the efficiency of utilizing a Mimetic Finite Difference based simulator for discrete fractures to predict hydrocarbon recovery when full tensor permeability is used. The results shed the light on the importance of mapping and realistically representing the highly heterogeneous porous media in the reservoir simulation using full tensor permeability. The orientation of the tensor will help accurately mimic the field conditions for oil flow. Moreover, this approach is powerful and can yield accurate results for hydrocarbon recovery, yet needs to be treated with care. The choice of the rotation axis and the angle for the full tensor permeability construction will greatly affect the flow in fractures and will result in early water breakthrough times in some cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进离散化方法模拟裂缝性碳酸盐岩全张量渗透率
天然裂缝性储层(NFR)具有复杂的物理流动条件,构成了世界上绝大多数的油气储量,并且表现出复杂的流动状态,这对储层建模具有挑战性。在这项工作中,我们展示了在使用全张量渗透率时,利用基于模拟有限差分的离散裂缝模拟器来预测油气采收率的效率。研究结果揭示了利用全张量渗透率进行储层模拟时,映射和真实表征高度非均质多孔介质的重要性。张量的方向将有助于准确地模拟油流的现场条件。此外,这种方法功能强大,可以产生准确的油气采收率结果,但需要谨慎处理。全张量渗透率施工旋转轴和角度的选择将极大地影响裂缝内的流动,在某些情况下会导致破水时间提前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deciphering Dual Porosity Carbonates Using Multiphysics Modeling and Inversion Quantification of Sublog Heterogeneities and Implication for Optimizing Well Injectivity - Example of a Carbonate Nodular Fabric Unlocking the Potential of a Giant Offshore Field through a Phased EOR Program and Pilot Implementation Far and Near Wellbore Fracture Characterization Using High Resolution Borehole Images and Acoustic Imaging Capillary Impacts on Recovery: a Core-Scale Study to Predict Residual Oil Saturation for Altered Wettability Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1