SiCILIA: a smart sensor system for clothing insulation inference using heat exchange

A. Shaabana, Rong Zheng, Zhipeng Xu
{"title":"SiCILIA: a smart sensor system for clothing insulation inference using heat exchange","authors":"A. Shaabana, Rong Zheng, Zhipeng Xu","doi":"10.1145/2737095.2742934","DOIUrl":null,"url":null,"abstract":"We present SiCILIA, a hardware platform that extracts physical and personal variables of an individual's thermal environment to infer the amount of clothing insulation and thermal sensation without human intervention. The proposed inference algorithms build upon theories of body heat transfer, and are corroborated by empirical data. Experimental results show the algorithm is capable of accurately predicting an occupant's thermal insulation with a confidence interval of approximately ±0.3 and a mean prediction error of 0.2.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2742934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present SiCILIA, a hardware platform that extracts physical and personal variables of an individual's thermal environment to infer the amount of clothing insulation and thermal sensation without human intervention. The proposed inference algorithms build upon theories of body heat transfer, and are corroborated by empirical data. Experimental results show the algorithm is capable of accurately predicting an occupant's thermal insulation with a confidence interval of approximately ±0.3 and a mean prediction error of 0.2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiCILIA:一种智能传感器系统,用于通过热交换推断服装绝缘
我们提出了SiCILIA,这是一个硬件平台,它可以提取个人热环境的物理和个人变量,从而在没有人为干预的情况下推断出衣服的隔热量和热感觉。所提出的推理算法建立在人体热传导理论的基础上,并得到了经验数据的证实。实验结果表明,该算法能够准确预测乘员的隔热状况,置信区间约为±0.3,平均预测误差为0.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing multi-hop calibration errors in large-scale mobile sensor networks FuzzyCAT: a novel procedure for refining the F-transform based sensor data compression CleanHands: an integrated monitoring system for control of hospital acquired infections A low-cost sensor platform for large-scale wideband spectrum monitoring Detecting malicious morphological alterations of ECG signals in body sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1