Evaluation of Neural Pattern Classifiers for a Remote Sensing Application

M. Fischer, S. Gopal, Petra Staufer-Steinnocher, K. Steinnocher
{"title":"Evaluation of Neural Pattern Classifiers for a Remote Sensing Application","authors":"M. Fischer, S. Gopal, Petra Staufer-Steinnocher, K. Steinnocher","doi":"10.2139/ssrn.1523788","DOIUrl":null,"url":null,"abstract":"This paper evaluates the classification accuracy of three neural network classifiers on a satellite image-based pattern classification problem. The neural network classifiers used include two types of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal (conventional) classifier is used as a benchmark to evaluate the performance of neural network classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to evaluation of classification accuracy, the neural classifiers are analysed for generalization capability and stability of results. Best overall results (in terms of accuracy and convergence time) are provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and requires no problem-specific system of initial weight values. Its in-sample classification error is 7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of simulations serve to illustrate the properties of the classifier in general and the stability of the result with respect to control parameters, and on the training time, the gradient descent control term, initial parameter conditions, and different training and testing sets.","PeriodicalId":353809,"journal":{"name":"GeologyRN: Computational Methods in Geology (Topic)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeologyRN: Computational Methods in Geology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1523788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper evaluates the classification accuracy of three neural network classifiers on a satellite image-based pattern classification problem. The neural network classifiers used include two types of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal (conventional) classifier is used as a benchmark to evaluate the performance of neural network classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to evaluation of classification accuracy, the neural classifiers are analysed for generalization capability and stability of results. Best overall results (in terms of accuracy and convergence time) are provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and requires no problem-specific system of initial weight values. Its in-sample classification error is 7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of simulations serve to illustrate the properties of the classifier in general and the stability of the result with respect to control parameters, and on the training time, the gradient descent control term, initial parameter conditions, and different training and testing sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遥感应用中神经模式分类器的评价
在一个基于卫星图像的模式分类问题上,对三种神经网络分类器的分类精度进行了评价。使用的神经网络分类器包括两种类型的多层感知器(MLP)和径向基函数网络。使用常规分类器作为基准来评估神经网络分类器的性能。该卫星图像由2460像素组成,选自维也纳市及其北部地区的Landsat-5 TM场景的一部分(270 x 360)。除了评估分类精度外,还分析了神经分类器的泛化能力和结果的稳定性。采用消权的MLP-1分类器提供了最佳的总体结果(在准确性和收敛时间方面)。它有少量的参数,不需要特定于问题的初始权重值系统。对于该问题,样本内分类误差为7.87%,样本外分类误差为10.24%。四类仿真说明了分类器的总体特性和结果在控制参数、训练时间、梯度下降控制项、初始参数条件以及不同训练和测试集方面的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning Applied to the Grouped t-Copula or the Modeling of Real-Life Dependence Stochastic Integration with Respect to Fractional Brownian Motion Nonlinear Eigenvalue Problems Arising in Earthquake Initiation Evaluation of Neural Pattern Classifiers for a Remote Sensing Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1