Efficient k-nearest neighbor queries with the Signature Quadratic Form Distance

C. Beecks, M. S. Uysal, T. Seidl
{"title":"Efficient k-nearest neighbor queries with the Signature Quadratic Form Distance","authors":"C. Beecks, M. S. Uysal, T. Seidl","doi":"10.1109/ICDEW.2010.5452772","DOIUrl":null,"url":null,"abstract":"A frequently encountered query type in multimedia databases is the k-nearest neighbor query which finds the k-nearest neighbors of a given query. To speed up such queries and to meet the user requirements in low response time, approximation techniques play an important role. In this paper, we present an efficient approximation technique applicable to distance measures defined over flexible feature representations, i.e. feature signatures. We apply our approximation technique to the recently proposed Signature Quadratic Form Distance applicable to feature signatures. We performed our experiments on numerous image databases, gathering k-nearest neighbor query rankings in significantly low computation time with an average speed-up factor of 13.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A frequently encountered query type in multimedia databases is the k-nearest neighbor query which finds the k-nearest neighbors of a given query. To speed up such queries and to meet the user requirements in low response time, approximation techniques play an important role. In this paper, we present an efficient approximation technique applicable to distance measures defined over flexible feature representations, i.e. feature signatures. We apply our approximation technique to the recently proposed Signature Quadratic Form Distance applicable to feature signatures. We performed our experiments on numerous image databases, gathering k-nearest neighbor query rankings in significantly low computation time with an average speed-up factor of 13.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有签名二次形式距离的高效k近邻查询
多媒体数据库中经常遇到的查询类型是k近邻查询,它查找给定查询的k近邻。为了加快查询速度并在较短的响应时间内满足用户需求,近似技术起着重要的作用。在本文中,我们提出了一种有效的近似技术,适用于定义在灵活特征表示上的距离度量,即特征签名。我们将逼近技术应用于最近提出的适用于特征签名的签名二次形式距离。我们在许多图像数据库上进行了实验,在非常低的计算时间内收集了k个最近邻查询排名,平均加速系数为13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast algorithms for time series mining Ontology alignment argumentation with mutual dependency between arguments and mappings A first step towards integration independence Towards enterprise software as a service in the cloud U-DBSCAN : A density-based clustering algorithm for uncertain objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1