Probabilistic Information Matrix Fusion in a Multi-Object Environment

Kaipei Yang, Y. Bar-Shalom
{"title":"Probabilistic Information Matrix Fusion in a Multi-Object Environment","authors":"Kaipei Yang, Y. Bar-Shalom","doi":"10.1109/MFI55806.2022.9913872","DOIUrl":null,"url":null,"abstract":"In distributed sensor fusion systems, each of the local sensors has its own tracker processing local measurements for measurement-to-track association and state estimation. Only the processed data, local tracks (LT) comprising state vector estimates and their covariance matrices are transmitted to the fusion center (FC). In this work, a multi-object hybrid probabilistic information matrix fusion (MO-HPIMF) is derived taking into account all association hypotheses. In MO-HPIMF, the association carried out is between the FC track states (prediction) and the LT state estimates from local sensors. When having a large number of objects and sensors in fusion, only the m-best FC-track-to-LT association hypotheses should be incorporated in MO-HPIMF to reduce the computational complexity. A Sequential m-best 2-D method is used for solving the multidimensional assignment problem in this work. It is shown in the simulations that MO-HPIMF can successfully track all targets of interest and is superior to track-to-track fusion (T2TF, a commonly used approach in distributed sensor fusion system) which relies on hard association decisions.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In distributed sensor fusion systems, each of the local sensors has its own tracker processing local measurements for measurement-to-track association and state estimation. Only the processed data, local tracks (LT) comprising state vector estimates and their covariance matrices are transmitted to the fusion center (FC). In this work, a multi-object hybrid probabilistic information matrix fusion (MO-HPIMF) is derived taking into account all association hypotheses. In MO-HPIMF, the association carried out is between the FC track states (prediction) and the LT state estimates from local sensors. When having a large number of objects and sensors in fusion, only the m-best FC-track-to-LT association hypotheses should be incorporated in MO-HPIMF to reduce the computational complexity. A Sequential m-best 2-D method is used for solving the multidimensional assignment problem in this work. It is shown in the simulations that MO-HPIMF can successfully track all targets of interest and is superior to track-to-track fusion (T2TF, a commonly used approach in distributed sensor fusion system) which relies on hard association decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标环境下的概率信息矩阵融合
在分布式传感器融合系统中,每个本地传感器都有自己的跟踪器处理本地测量,用于测量-跟踪关联和状态估计。只有经过处理的数据、包含状态向量估计及其协方差矩阵的局部轨迹(LT)才被传输到融合中心(FC)。本文提出了一种考虑所有关联假设的多目标混合概率信息矩阵融合(MO-HPIMF)。在MO-HPIMF中,FC轨迹状态(预测)与来自局部传感器的LT状态估计之间进行了关联。当融合对象和传感器数量较大时,MO-HPIMF中只应采用m-best fc -track- lt关联假设,以降低计算复杂度。本文采用序列m-最优二维方法求解多维分配问题。仿真结果表明,MO-HPIMF可以成功地跟踪所有感兴趣的目标,并且优于依赖于硬关联决策的分布式传感器融合系统中常用的航迹到航迹融合(T2TF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1