Fabrication of CMOS Compatible 2-terminal NEMS for Low Power Applications

S. Saha, M. Baghini, Mayank Goel, V. Rao
{"title":"Fabrication of CMOS Compatible 2-terminal NEMS for Low Power Applications","authors":"S. Saha, M. Baghini, Mayank Goel, V. Rao","doi":"10.1109/icee50728.2020.9776893","DOIUrl":null,"url":null,"abstract":"Nano-electro-mechanical switch (NEMS) plays a key role to reduce the leakage current as compared to the traditional CMOS in ultra-low power applications. This is because of the air gap between two metal plates in 2-terminal (2T) NEMS i.e. there is almost zero leakage current while it's in OFF-state. In this paper, we demonstrate a CMOS compatible NEMS with 1.5 V pull-in voltage, $\\sim 150\\ \\Omega$ ON-state resistance (RON), 15 ns turn ON delay, and 109 ON/OFF current ratio (ION/IOFF) in the ambient conditions. This work exhibits the combination of electron beam lithography (EBL) and a bilayer lift-off process at room temperature (RT) to realize the NEMS. This combination facilitates easy release of structures with an air gap of 25 nm and a beam size of $1\\ \\mu m\\times 1.5\\ \\mu m$. This low power NEMS will be useful for the zero leakage switch for the variety of low power applications.","PeriodicalId":436884,"journal":{"name":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee50728.2020.9776893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-electro-mechanical switch (NEMS) plays a key role to reduce the leakage current as compared to the traditional CMOS in ultra-low power applications. This is because of the air gap between two metal plates in 2-terminal (2T) NEMS i.e. there is almost zero leakage current while it's in OFF-state. In this paper, we demonstrate a CMOS compatible NEMS with 1.5 V pull-in voltage, $\sim 150\ \Omega$ ON-state resistance (RON), 15 ns turn ON delay, and 109 ON/OFF current ratio (ION/IOFF) in the ambient conditions. This work exhibits the combination of electron beam lithography (EBL) and a bilayer lift-off process at room temperature (RT) to realize the NEMS. This combination facilitates easy release of structures with an air gap of 25 nm and a beam size of $1\ \mu m\times 1.5\ \mu m$. This low power NEMS will be useful for the zero leakage switch for the variety of low power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低功耗CMOS兼容二端NEMS的制造
与传统CMOS相比,纳米机电开关(NEMS)在超低功耗应用中起着降低漏电流的关键作用。这是因为在2端(2T) NEMS中两个金属板之间的气隙,即在关闭状态下几乎没有泄漏电流。在本文中,我们展示了一个CMOS兼容的NEMS,在环境条件下具有1.5 V的拉入电压,$\sim 150\ \Omega$导通状态电阻(RON), 15 ns导通延迟和109 ON/OFF电流比(ION/IOFF)。这项工作展示了电子束光刻(EBL)和室温(RT)双层剥离工艺的结合来实现NEMS。这种组合便于释放具有25纳米气隙和$1\ \mu m\times 1.5\ \mu m$光束尺寸的结构。这种低功率NEMS将用于各种低功率应用的零漏开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiation and thermal study on Defensive MOSFET a-InGaZnO Thin-film Transistor as an Oxygen Gas Sensor with In-Situ Electrical Characterization Troubleshooting the efficiency variation in PERC silicon solar cell pilot production line using advanced imaging characterization techniques Simulation studies for mode profile analysis in single mode high power asymmetric large optical cavity laser structures Simulation assisted flexibility improvement studies for flexible transparent printed touch sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1