An ontology based semantic heterogeneity measurement framework for optimization in distributed data mining

Bin Liu, Shu-Gui Cao, D. Cao, Qing-Chun Li, Hai-Tao Liu, Shao-Nan Shi
{"title":"An ontology based semantic heterogeneity measurement framework for optimization in distributed data mining","authors":"Bin Liu, Shu-Gui Cao, D. Cao, Qing-Chun Li, Hai-Tao Liu, Shao-Nan Shi","doi":"10.1109/ICMLC.2012.6358897","DOIUrl":null,"url":null,"abstract":"In distributed data mining (DDM) systems, the semantic heterogeneity between data sources has not got universal attentions, which may produce the potential risks of damaging the quality of the final result. This paper presents a semantic distance measurement framework to extract the essential semantic heterogeneity between data sources. In this framework, an ontology-matching based multi-strategy voting method is utilized to comprehensively synthesize the semantic distances between two data source ontologies in element level and structure level. The output of the framework can be leveraged as the foundation to group the data sources for optimizing the DDM result. Finally, the framework is integrated into a DDM architecture we have proposed.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6358897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In distributed data mining (DDM) systems, the semantic heterogeneity between data sources has not got universal attentions, which may produce the potential risks of damaging the quality of the final result. This paper presents a semantic distance measurement framework to extract the essential semantic heterogeneity between data sources. In this framework, an ontology-matching based multi-strategy voting method is utilized to comprehensively synthesize the semantic distances between two data source ontologies in element level and structure level. The output of the framework can be leveraged as the foundation to group the data sources for optimizing the DDM result. Finally, the framework is integrated into a DDM architecture we have proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向分布式数据挖掘优化的基于本体的语义异构度量框架
在分布式数据挖掘(DDM)系统中,数据源之间的语义异构性没有得到普遍的重视,可能会产生影响最终结果质量的潜在风险。本文提出了一种语义距离度量框架,用于提取数据源之间的本质语义异构性。在该框架中,采用基于本体匹配的多策略投票方法,综合综合两个数据源本体在元素级和结构级的语义距离。框架的输出可以作为对数据源进行分组以优化DDM结果的基础。最后,将该框架集成到我们提出的DDM体系结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1