{"title":"Multiple-valued current-mode MOS integrated circuits based on dual-rail source-coupled logic","authors":"T. Hanyu, A. Mochizuki, M. Kameyama","doi":"10.1109/ISMVL.1994.302224","DOIUrl":null,"url":null,"abstract":"This paper presents a design of new multiple-valued current-mode MOS integrated circuits based on dual-rail source-coupled logic. This circuit can be efficiently utilized in implementing high-speed arithmetic VLSI systems. The use of dual-rail source-coupled logic makes it possible to reduce an input voltage swing for a threshold detector, so that the switching delay of the threshold detector can be reduced. This property is suitable for implementing high-speed multiple-valued integrated circuits with low supply voltage. It is demonstrated that the delay of the proposed radix-2 signed-digit (SD) adder based on dual-rail source-coupled logic is reduced to 67 percent in comparison with that of the corresponding binary CMOS implementation.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a design of new multiple-valued current-mode MOS integrated circuits based on dual-rail source-coupled logic. This circuit can be efficiently utilized in implementing high-speed arithmetic VLSI systems. The use of dual-rail source-coupled logic makes it possible to reduce an input voltage swing for a threshold detector, so that the switching delay of the threshold detector can be reduced. This property is suitable for implementing high-speed multiple-valued integrated circuits with low supply voltage. It is demonstrated that the delay of the proposed radix-2 signed-digit (SD) adder based on dual-rail source-coupled logic is reduced to 67 percent in comparison with that of the corresponding binary CMOS implementation.<>