Regression Nearest Neighbor in Face Recognition

Shu Yang, Chao Zhang
{"title":"Regression Nearest Neighbor in Face Recognition","authors":"Shu Yang, Chao Zhang","doi":"10.1109/ICPR.2006.989","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a regression nearest neighbor framework for general classification tasks. To alleviate potential problems caused by nonlinearity, we propose a kernel regression nearest neighbor (KRNN) algorithm and its convex counterpart (CKRNN) as two specific extensions of nearest neighbor algorithm and present a fast and useful kernel selection method correspondingly. Comprehensive analysis and extensive experiments are used to demonstrate the effectiveness of our methods in real face datasets","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we introduce a regression nearest neighbor framework for general classification tasks. To alleviate potential problems caused by nonlinearity, we propose a kernel regression nearest neighbor (KRNN) algorithm and its convex counterpart (CKRNN) as two specific extensions of nearest neighbor algorithm and present a fast and useful kernel selection method correspondingly. Comprehensive analysis and extensive experiments are used to demonstrate the effectiveness of our methods in real face datasets
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别中的最近邻回归
在本文中,我们引入了一种用于一般分类任务的回归最近邻框架。为了缓解非线性带来的潜在问题,我们提出了核回归最近邻算法(KRNN)和其凸对偶算法(CKRNN)作为最近邻算法的两种具体扩展,并相应地提出了一种快速实用的核选择方法。综合分析和大量实验证明了我们的方法在真实人脸数据集上的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1