Detecting Most Influential Parameters in High Voltage Induction Motor Failure using Logistic Regression Analysis

Ahmad Masry Bin Zainol, Nurul Rawaida Ain Burhani
{"title":"Detecting Most Influential Parameters in High Voltage Induction Motor Failure using Logistic Regression Analysis","authors":"Ahmad Masry Bin Zainol, Nurul Rawaida Ain Burhani","doi":"10.1109/ISMODE56940.2022.10180980","DOIUrl":null,"url":null,"abstract":"This study identifies the most influential factors of rotating machines or induction motors that are commonly used in the industry such as oil and gas industry. The data gathered in the industry, especially for High Voltage Induction Motors (HVIM) in the plant commonly does not fully utilize to detect the most influential maintenance factor. This required advance and latest technology to convert the data into more usable and estimate the probability of failure efficiently. A predictive maintenance solution can be used to solve data-driven problems like the complexity to compute, taking longer time to analyze, and difficulty in using big data features. Logistic Regression Analysis (LRA) methods can be used to determine the most influencing factor (MIF) of maintenance of high voltage induction motors. The MIF of HVIM maintenance obtained in the study is vibration, temperature, and power factor with an R2 value of 0.9993888. It is shown that the R2 value was high and significant. The HVIM maintenance prediction based on MIF is suited for industrial applications due to its fitness in using industrial data for analysis. As a result, it suited the existing industrial maintenance for predictive purposes and can be further developed in the future.","PeriodicalId":335247,"journal":{"name":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMODE56940.2022.10180980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study identifies the most influential factors of rotating machines or induction motors that are commonly used in the industry such as oil and gas industry. The data gathered in the industry, especially for High Voltage Induction Motors (HVIM) in the plant commonly does not fully utilize to detect the most influential maintenance factor. This required advance and latest technology to convert the data into more usable and estimate the probability of failure efficiently. A predictive maintenance solution can be used to solve data-driven problems like the complexity to compute, taking longer time to analyze, and difficulty in using big data features. Logistic Regression Analysis (LRA) methods can be used to determine the most influencing factor (MIF) of maintenance of high voltage induction motors. The MIF of HVIM maintenance obtained in the study is vibration, temperature, and power factor with an R2 value of 0.9993888. It is shown that the R2 value was high and significant. The HVIM maintenance prediction based on MIF is suited for industrial applications due to its fitness in using industrial data for analysis. As a result, it suited the existing industrial maintenance for predictive purposes and can be further developed in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Logistic回归分析的高压感应电机故障影响参数检测
该研究确定了在石油和天然气等行业中常用的旋转机器或感应电机的最具影响力的因素。工业中收集的数据,特别是工厂中高压感应电机(HVIM)的数据,通常没有充分利用来检测最具影响的维护因素。这需要先进的最新技术将数据转换为更可用的数据,并有效地估计故障概率。预测性维护解决方案可用于解决数据驱动的问题,例如计算复杂性,分析时间较长以及难以使用大数据功能。采用Logistic回归分析(LRA)方法可以确定高压感应电机维修的最大影响因素(MIF)。本研究得到的HVIM维护的MIF为振动、温度、功率因数,R2值为0.9993888。结果表明,R2值高且显著。基于MIF的HVIM维修预测由于适合于使用工业数据进行分析,因此适合于工业应用。因此,它适合现有的工业维护的预测目的,并可以在未来进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov Switching Process Monitoring Brain Wave Movement in Autism Children Analog Digit Electricity Meter Recognition Using Faster R-CNN Analysis of Weather Data for Rainfall Prediction using C5.0 Decision Tree Algorithm Implementation of Real-Time Sound Source Localization using TMS320C6713 Board with Interaural Time Difference Method Classification of Ornamental Plants with Convolutional Neural Networks and MobileNetV2 Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1