Essay auto-scoring using N-Gram and Jaro Winkler based Indonesian Typos

H. Jayadianti, B. Santosa, Judanti Cahyaning, S. Saifullah, Rafał Dreżewski
{"title":"Essay auto-scoring using N-Gram and Jaro Winkler based Indonesian Typos","authors":"H. Jayadianti, B. Santosa, Judanti Cahyaning, S. Saifullah, Rafał Dreżewski","doi":"10.30812/matrik.v22i2.2473","DOIUrl":null,"url":null,"abstract":"Writing errors on e-essay exams reduce scores. Thus, detecting and correcting errors automatically in writing answers is necessary. The implementation of Levenshtein Distance and N-Gram can detect writing errors. However, this process needed a long time because of the distance method used. Therefore, this research aims to hybrid Jaro Winker and N-Gram methods to detect and correct writing errors automatically. This process required preprocessing and finding the best word recommendations by the Jaro Winkler method, which refers to Kamus Besar Bahasa Indonesia (KBBI). The N-Gram method refers to the corpus. The final scoring used the Vector Space Model (VSM) method based on the similarity of words between the answer keys and the respondent’s answers. Datasets used 115 answers from 23 respondents with some writing errors. The results of Jaro Winkler and N-Gram methods are good in detecting and correcting Indonesian words with the accuracy of detection averages of 83.64% (minimum of 57.14% and maximum of 100.00%). In contrast, the error correction accuracy averages 78.44% (minimum of 40.00% and maximum of 100.00%). However, Natural Language Processing (NLP) needs to improve these results for word recommendations.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i2.2473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Writing errors on e-essay exams reduce scores. Thus, detecting and correcting errors automatically in writing answers is necessary. The implementation of Levenshtein Distance and N-Gram can detect writing errors. However, this process needed a long time because of the distance method used. Therefore, this research aims to hybrid Jaro Winker and N-Gram methods to detect and correct writing errors automatically. This process required preprocessing and finding the best word recommendations by the Jaro Winkler method, which refers to Kamus Besar Bahasa Indonesia (KBBI). The N-Gram method refers to the corpus. The final scoring used the Vector Space Model (VSM) method based on the similarity of words between the answer keys and the respondent’s answers. Datasets used 115 answers from 23 respondents with some writing errors. The results of Jaro Winkler and N-Gram methods are good in detecting and correcting Indonesian words with the accuracy of detection averages of 83.64% (minimum of 57.14% and maximum of 100.00%). In contrast, the error correction accuracy averages 78.44% (minimum of 40.00% and maximum of 100.00%). However, Natural Language Processing (NLP) needs to improve these results for word recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文章自动评分使用N-Gram和Jaro Winkler基于印尼打字错误
电子论文考试中的写作错误会降低分数。因此,在写作答案中自动检测和纠正错误是必要的。Levenshtein Distance和N-Gram的实现可以检测写错误。然而,由于使用了距离法,这个过程需要很长时间。因此,本研究旨在混合Jaro Winker和N-Gram方法,自动检测和纠正书写错误。这个过程需要进行预处理,并通过Jaro Winkler方法找到最佳推荐词,该方法指的是印尼语Kamus Besar Bahasa Indonesia (KBBI)。N-Gram方法指的是语料库。最后的评分采用向量空间模型(VSM)方法,基于答案键与被调查者的答案之间的单词相似度。数据集使用了23名受访者的115个答案,其中有一些书写错误。Jaro Winkler方法和N-Gram方法对印尼语单词的检测和校正效果良好,平均检测准确率为83.64%(最小57.14%,最高100.00%)。误差校正精度平均为78.44%(最小为40.00%,最大为100.00%)。然而,自然语言处理(NLP)需要改进这些单词推荐的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1