Linear Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud

Nicoleta Tantalaki, S. Souravlas, M. Roumeliotis, S. Katsavounis
{"title":"Linear Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud","authors":"Nicoleta Tantalaki, S. Souravlas, M. Roumeliotis, S. Katsavounis","doi":"10.1145/3350546.3352507","DOIUrl":null,"url":null,"abstract":"Nowadays, there is an accelerating need to efficiently and timely handle large amounts of data that arrives continuously. Streams of big data led to the emergence of Distributed Stream Processing Systems (DSPS) that assign processing tasks to the available resources (dynamically or not) and route streaming data between them. Efficient scheduling of processing tasks of data flows can reduce application latencies and eliminate network congestion. In this work, we propose a linear complexity scheme for the task allocation and scheduling problem to improve system’s performance, load balancing and memory efficiency, in applications where there is need for heavy communication (all-to-all) between the tasks assigned to pairs of components.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Nowadays, there is an accelerating need to efficiently and timely handle large amounts of data that arrives continuously. Streams of big data led to the emergence of Distributed Stream Processing Systems (DSPS) that assign processing tasks to the available resources (dynamically or not) and route streaming data between them. Efficient scheduling of processing tasks of data flows can reduce application latencies and eliminate network congestion. In this work, we propose a linear complexity scheme for the task allocation and scheduling problem to improve system’s performance, load balancing and memory efficiency, in applications where there is need for heavy communication (all-to-all) between the tasks assigned to pairs of components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云中多处理器集上大数据流的线性调度
如今,人们越来越需要高效、及时地处理不断到达的大量数据。大数据流导致分布式流处理系统(DSPS)的出现,该系统将处理任务分配给可用资源(动态或非动态),并在它们之间路由流数据。有效地调度数据流处理任务,可以减少应用程序延迟,消除网络拥塞。在这项工作中,我们提出了一个线性复杂度方案来解决任务分配和调度问题,以提高系统的性能,负载平衡和内存效率,在分配给组件对的任务之间需要大量通信(所有对所有)的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1