In-silico Research Platform in the Cloud - Performance and Scalability Analysis

M. Ivanovic, A. Živić, N. Tachos, George Gois, N. Filipovic, D. Fotiadis
{"title":"In-silico Research Platform in the Cloud - Performance and Scalability Analysis","authors":"M. Ivanovic, A. Živić, N. Tachos, George Gois, N. Filipovic, D. Fotiadis","doi":"10.1109/BIBE52308.2021.9635574","DOIUrl":null,"url":null,"abstract":"The paper describes experiences from building and cloudification of the in-silico research platform SilicoFCM, an innovative in-silico clinical trials' solution for the design and functional optimization of whole heart performance and monitoring effectiveness of pharmacological treatment, with the aim to reduce the animal studies and the human clinical trials. The primary aim of cloudification was to prove portability, improve scalability and reduce long-term infrastructure costs. The most computationally expensive part of the platform, the scientific workflow manager, was successfully ported to Amazon Web Services. We benchmarked the performance on three distinct research workflows, each of them having different resource requirements and execution time. The first benchmark was pure performance of running workflow sequentially. The aim of the second test was to stress-test the underlying infrastructure by submitting multiple workflows simultaneously. The benchmark results are promising, painting the infrastructure launching overhead almost negligible in this kind of heavy computational use-case.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes experiences from building and cloudification of the in-silico research platform SilicoFCM, an innovative in-silico clinical trials' solution for the design and functional optimization of whole heart performance and monitoring effectiveness of pharmacological treatment, with the aim to reduce the animal studies and the human clinical trials. The primary aim of cloudification was to prove portability, improve scalability and reduce long-term infrastructure costs. The most computationally expensive part of the platform, the scientific workflow manager, was successfully ported to Amazon Web Services. We benchmarked the performance on three distinct research workflows, each of them having different resource requirements and execution time. The first benchmark was pure performance of running workflow sequentially. The aim of the second test was to stress-test the underlying infrastructure by submitting multiple workflows simultaneously. The benchmark results are promising, painting the infrastructure launching overhead almost negligible in this kind of heavy computational use-case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云中的芯片研究平台——性能和可扩展性分析
本文介绍了硅芯片研究平台硅ofcm的构建和云化经验,硅ofcm是一种创新的硅芯片临床试验解决方案,用于全心脏性能的设计和功能优化以及药物治疗效果的监测,旨在减少动物研究和人体临床试验。云化的主要目标是证明可移植性、提高可伸缩性和降低长期基础设施成本。该平台中计算成本最高的部分,即科学工作流管理器,已成功移植到Amazon Web Services。我们在三个不同的研究工作流上对性能进行基准测试,每个工作流都有不同的资源需求和执行时间。第一个基准测试是连续运行工作流的纯粹性能。第二个测试的目的是通过同时提交多个工作流来对底层基础结构进行压力测试。基准测试结果很有希望,在这种计算量很大的用例中,基础设施的启动开销几乎可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1