Degradation behavior analysis of electro-hydraulic servo valve under erosion wear

Kun Zhang, Jin-yong Yao, T. Jiang, Xizhong Yin, Xiaobo Yu
{"title":"Degradation behavior analysis of electro-hydraulic servo valve under erosion wear","authors":"Kun Zhang, Jin-yong Yao, T. Jiang, Xizhong Yin, Xiaobo Yu","doi":"10.1109/ICPHM.2013.6621417","DOIUrl":null,"url":null,"abstract":"This paper presents a simulation analysis method of degradation behavior for electro-hydraulic servo valve (EHSV). Unlike traditional statistical methods, our work is motivated by the failure mechanism of erosion wear. We assume that degradation trend of flow characteristic is related to structure wear in the valve components. Hence, in this paper, twin flapper-nozzle servo valve is considered as an example to analyze the degradation behavior in a simulation way. First, erosion wear rates at the precise structure are obtained in hydraulic oil of contaminant class 12 by the Computational Fluid Dynamics (CFD) models. Then, degradation trends of null leakage are simulated under different erosive wear conditions. Finally, the relationship between wear in the valve structure and degradation in null leakage is obtained by the testing data. The simulation results show that erosion wear happens at three sites i.e. the flapper surface, the nozzle outlet and sharp edges of the spool. Moreover, erosion wear of sharp edges greatly influences the flow rate of null leakage. The feasibility of our approach in analyzing degradation trend of hydraulic components is validated by the simulation experiments.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a simulation analysis method of degradation behavior for electro-hydraulic servo valve (EHSV). Unlike traditional statistical methods, our work is motivated by the failure mechanism of erosion wear. We assume that degradation trend of flow characteristic is related to structure wear in the valve components. Hence, in this paper, twin flapper-nozzle servo valve is considered as an example to analyze the degradation behavior in a simulation way. First, erosion wear rates at the precise structure are obtained in hydraulic oil of contaminant class 12 by the Computational Fluid Dynamics (CFD) models. Then, degradation trends of null leakage are simulated under different erosive wear conditions. Finally, the relationship between wear in the valve structure and degradation in null leakage is obtained by the testing data. The simulation results show that erosion wear happens at three sites i.e. the flapper surface, the nozzle outlet and sharp edges of the spool. Moreover, erosion wear of sharp edges greatly influences the flow rate of null leakage. The feasibility of our approach in analyzing degradation trend of hydraulic components is validated by the simulation experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲蚀磨损下电液伺服阀的退化行为分析
提出了一种电液伺服阀退化行为的仿真分析方法。与传统的统计方法不同,我们的工作是由侵蚀磨损的失效机制驱动的。我们认为流量特性的退化趋势与阀门部件的结构磨损有关。因此,本文以双挡板喷嘴伺服阀为例,对其退化行为进行仿真分析。首先,通过计算流体动力学(CFD)模型得到了12类污染物液压油在精确结构处的冲蚀磨损率。然后,模拟了不同侵蚀磨损条件下零泄漏的退化趋势。最后,通过试验数据得出了阀结构磨损与零泄漏退化之间的关系。仿真结果表明,冲蚀磨损主要发生在挡板表面、喷嘴出口和阀芯锋利边缘三个部位。锐边的冲蚀磨损对零泄漏流量影响较大。仿真实验验证了该方法分析液压元件退化趋势的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1