{"title":"Combination tanning mechanism inspired environmentally benign catalyst for efficient degradation of tetracycline","authors":"Meng Xiao, Shuangmei Liu, Wenqian Qi, Yu Peng, Qingyu Yan, Hui Mao","doi":"10.1186/s42825-023-00130-w","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of chelation reaction between metals and tannins is a common tanning method in leather chemistry. Herein, a novel combination tanning mechanism inspired environmentally benign catalyst (CMBT-Fe<sup>0</sup>) was synthesized by immobilizing Fe nanoparticles onto bayberry tannin (BT) grafted chitosan microfibers (CM). The obtained catalyst featured a well-defined microfibrous structure, on which Fe<sup>0</sup> nanoparticles were highly dispersed to exhibit exceptional catalytic activity for the degradation of tetracycline (TC). The catalytic activity of CMBT-Fe<sup>0</sup> was 1.72 times higher than that of the commercial Fe<sup>0</sup> nanoparticles without immobilization, with 95.03% of TC degraded within 90.0 min. The CMBT-Fe<sup>0</sup> catalysts were recycled 6 times, with the removal rate of TC maintained at 82.56%. Furthermore, a possible mechanism responsible for the catalytic removal of TC was provided by analyzing the catalytic degradation products via liquid chromatography-mass spectrometry. Therefore, our investigation successfully developed efficient catalysts to address the concerned environmental issue of antibiotic pollution.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-023-00130-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-023-00130-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of chelation reaction between metals and tannins is a common tanning method in leather chemistry. Herein, a novel combination tanning mechanism inspired environmentally benign catalyst (CMBT-Fe0) was synthesized by immobilizing Fe nanoparticles onto bayberry tannin (BT) grafted chitosan microfibers (CM). The obtained catalyst featured a well-defined microfibrous structure, on which Fe0 nanoparticles were highly dispersed to exhibit exceptional catalytic activity for the degradation of tetracycline (TC). The catalytic activity of CMBT-Fe0 was 1.72 times higher than that of the commercial Fe0 nanoparticles without immobilization, with 95.03% of TC degraded within 90.0 min. The CMBT-Fe0 catalysts were recycled 6 times, with the removal rate of TC maintained at 82.56%. Furthermore, a possible mechanism responsible for the catalytic removal of TC was provided by analyzing the catalytic degradation products via liquid chromatography-mass spectrometry. Therefore, our investigation successfully developed efficient catalysts to address the concerned environmental issue of antibiotic pollution.