Representing Vector Geographic Information As a Tensor for Deep Learning Based Map Generalisation

A. Courtial, G. Touya, X. Zhang
{"title":"Representing Vector Geographic Information As a Tensor for Deep Learning Based Map Generalisation","authors":"A. Courtial, G. Touya, X. Zhang","doi":"10.5194/agile-giss-3-32-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Recently, many researchers tried to generate (generalised) maps using deep learning, and most of the proposed methods deal with deep neural network architecture choices. Deep learning learns to reproduce examples, so we think that improving the training examples, and especially the representation of the initial geographic information, is the key issue for this problem. Our article extracts some representation issues from a literature review and proposes different ways to represent vector geographic information as a tensor.We propose two kinds of contributions: 1) the representation of information by layers; 2) the representation of additional information. Then, we demonstrate the interest of some of our propositions with experiments that show a visual improvement for the generation of generalised topographic maps in urban areas.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-32-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract. Recently, many researchers tried to generate (generalised) maps using deep learning, and most of the proposed methods deal with deep neural network architecture choices. Deep learning learns to reproduce examples, so we think that improving the training examples, and especially the representation of the initial geographic information, is the key issue for this problem. Our article extracts some representation issues from a literature review and proposes different ways to represent vector geographic information as a tensor.We propose two kinds of contributions: 1) the representation of information by layers; 2) the representation of additional information. Then, we demonstrate the interest of some of our propositions with experiments that show a visual improvement for the generation of generalised topographic maps in urban areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将矢量地理信息表示为基于深度学习的地图泛化张量
摘要最近,许多研究人员尝试使用深度学习来生成(广义)地图,大多数提出的方法都涉及深度神经网络架构的选择。深度学习学习再现样例,因此我们认为改进训练样例,特别是初始地理信息的表示是解决这个问题的关键。本文从文献综述中提取了一些表示问题,并提出了将矢量地理信息表示为张量的不同方法。我们提出了两种贡献:1)信息的分层表示;2)附加信息的表示。然后,我们通过实验证明了我们的一些命题的兴趣,这些实验显示了在城市地区生成一般地形图的视觉改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is it safe to be attractive? Disentangling the influence of streetscape features on the perceived safety and attractiveness of city streets Satellite parking: a new method for measuring parking occupancy Semantic complexity of geographic questions - A comparison in terms of conceptual transformations of answers Development of an inclusive Mapping Application in a Co-Design Process Visualizing of the below-ground water network infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1