Assembly of Echo State Networks Driven by Segregated Low Dimensional Signals

T. Iinuma, S. Nobukawa, S. Yamaguchi
{"title":"Assembly of Echo State Networks Driven by Segregated Low Dimensional Signals","authors":"T. Iinuma, S. Nobukawa, S. Yamaguchi","doi":"10.1109/IJCNN55064.2022.9892881","DOIUrl":null,"url":null,"abstract":"An echo state network (ESN), consisting of an input layer, reservoir, and output layer, provides a higher learning-efficient approach than other recurrent neural networks (RNNs). In the design of ESNs, a sufficiently large number of reservoir neurons is required compared to the dimension of the input signal. Thus, the number of neurons must be increased for high-dimensional input to achieve good performance. However, an increase in the number of neurons increases the computational load. To solve this problem, we propose an assembly ESN (AESN) architecture comprising a feature extraction part that uses multiple sub-ESNs with segregated components of high-dimensional input and a feature integration part. To validate the effectiveness of the proposed AESN, we investigated and compared the conventional ESN with the AESN under high-dimensional input. The results show that the AESN is possibly superior to the conventional ESN in accuracy, memory performance, and computational load. We believe that the AESN also has a correct integration function. Therefore, the proposed method is expected to solve high-dimensional problems with improved accuracy.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An echo state network (ESN), consisting of an input layer, reservoir, and output layer, provides a higher learning-efficient approach than other recurrent neural networks (RNNs). In the design of ESNs, a sufficiently large number of reservoir neurons is required compared to the dimension of the input signal. Thus, the number of neurons must be increased for high-dimensional input to achieve good performance. However, an increase in the number of neurons increases the computational load. To solve this problem, we propose an assembly ESN (AESN) architecture comprising a feature extraction part that uses multiple sub-ESNs with segregated components of high-dimensional input and a feature integration part. To validate the effectiveness of the proposed AESN, we investigated and compared the conventional ESN with the AESN under high-dimensional input. The results show that the AESN is possibly superior to the conventional ESN in accuracy, memory performance, and computational load. We believe that the AESN also has a correct integration function. Therefore, the proposed method is expected to solve high-dimensional problems with improved accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分离低维信号驱动的回声状态网络装配
回声状态网络(ESN)由输入层、存储层和输出层组成,提供了比其他递归神经网络(rnn)更高的学习效率。在ESNs的设计中,与输入信号的维数相比,需要足够多的存储神经元。因此,为了获得良好的性能,必须增加高维输入的神经元数量。然而,神经元数量的增加增加了计算负荷。为了解决这个问题,我们提出了一种装配ESN (asesn)架构,该架构包括一个特征提取部分,该部分使用多个具有高维输入的分离组件的子ESN和一个特征集成部分。为了验证所提出的回声状态网络的有效性,我们研究并比较了高维输入下的传统回声状态网络和回声状态网络。结果表明,该方法在准确率、记忆性能和计算量等方面都优于传统的回声状态网络。我们认为asesn也具有正确的积分功能。因此,该方法有望以更高的精度解决高维问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1