Moving pedestrian detection based on motion segmentation

Shanshan Zhang, C. Bauckhage, D. A. Klein, A. Cremers
{"title":"Moving pedestrian detection based on motion segmentation","authors":"Shanshan Zhang, C. Bauckhage, D. A. Klein, A. Cremers","doi":"10.1109/WORV.2013.6521921","DOIUrl":null,"url":null,"abstract":"The detection of moving pedestrians is of major importance in the area of robot vision, since information about such persons and their tracks should be incorporated into reliable collision avoidance algorithms. In this paper, we propose a new approach, based on motion analysis, to detect moving pedestrians. Our main contribution is to localize moving objects by motion segmentation on an optical flow field as a preprocessing step, so as to significantly reduce the number of detection windows needed to be evaluated by a subsequent people classifier, resulting in a fast method for real-time systems. Therefore, we align detection windows with segmented motion-blobs using a height-prior rule. Finally, we apply a Histogram of Oriented Gradients (HOG) features based Support Vector Machine with Radial Basis Function kernel (RBF-SVM) to estimate a confidence for each detection window, and thereby locate potential pedestrians inside the segmented blobs. Experimental results on “Daimler mono moving pedestrian detection” benchmark show that our approach obtains a log-average miss rate of 43% in the FPPI range [10-2, 100], which is a clear improvement with respect to the naive HOG+linSVM approach and better than several other state-of-the-art detectors. Moreover, our approach also reduces runtime per frame by an order of magnitude.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The detection of moving pedestrians is of major importance in the area of robot vision, since information about such persons and their tracks should be incorporated into reliable collision avoidance algorithms. In this paper, we propose a new approach, based on motion analysis, to detect moving pedestrians. Our main contribution is to localize moving objects by motion segmentation on an optical flow field as a preprocessing step, so as to significantly reduce the number of detection windows needed to be evaluated by a subsequent people classifier, resulting in a fast method for real-time systems. Therefore, we align detection windows with segmented motion-blobs using a height-prior rule. Finally, we apply a Histogram of Oriented Gradients (HOG) features based Support Vector Machine with Radial Basis Function kernel (RBF-SVM) to estimate a confidence for each detection window, and thereby locate potential pedestrians inside the segmented blobs. Experimental results on “Daimler mono moving pedestrian detection” benchmark show that our approach obtains a log-average miss rate of 43% in the FPPI range [10-2, 100], which is a clear improvement with respect to the naive HOG+linSVM approach and better than several other state-of-the-art detectors. Moreover, our approach also reduces runtime per frame by an order of magnitude.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于运动分割的运动行人检测
移动行人的检测在机器人视觉领域是非常重要的,因为关于这些人及其轨迹的信息应该被纳入可靠的避碰算法中。本文提出了一种基于运动分析的行人检测方法。我们的主要贡献是通过光流场的运动分割作为预处理步骤来定位运动物体,从而显着减少后续人员分类器需要评估的检测窗口数量,从而为实时系统提供快速方法。因此,我们使用高度优先规则将检测窗口与分割的运动blobs对齐。最后,采用基于径向基函数核(RBF-SVM)的定向梯度直方图(HOG)特征支持向量机估计每个检测窗口的置信度,从而在分割的blob内定位潜在行人。在“Daimler mono moving pedestrian detection”基准上的实验结果表明,我们的方法在FPPI范围内获得了43%的对数平均缺失率[10- 2,100],相对于朴素的HOG+linSVM方法有了明显的改进,并且优于其他几种最先进的检测器。此外,我们的方法还将每帧运行时间减少了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1