{"title":"Allowable Stress Development of Diffusion Bonded Alloy 800H for Section III","authors":"Heramb P. Mahajan, Ian W. Jentz, T. Hassan","doi":"10.1115/pvp2020-21499","DOIUrl":null,"url":null,"abstract":"\n There is increased interest in the application of compact heat exchangers (CHXs) for nuclear service given their high thermal efficiency and compactness. CHXs are fabricated by joining a stack of etched plates with dense microchannels through diffusion bonding. Diffusion bonding material has basic mechanical properties that differ from a base material, requiring appropriate mechanical properties and allowable stresses for design. Existing nuclear code ASME Section III, Division 5 does not address diffusion bonded materials . Hence, there is a need to develop material properties and allowable stresses of diffusion bonded materials and weldments. In this paper, one candidate material, Alloy 800H, was selected for diffusion bonding trials. Preliminary results obtained from a series of tensile and creep tests suggest that the diffusion bonded material is weaker than the base metal 800H. These experimental data are used in determining recommended allowable stresses of the diffusion bonded 800H material. In this paper, tables of the strength reduction factors for various allowable stresses which includes Smt, So, St, Sy and Su for diffusion bonded Alloy 800H are presented. These reduction factors are applicable to CHX design. The Larson Miller Parameter (LMP) is used to extrapolate short term creep tests to longer creep life and lower temperatures, and estimate the onset of tertiary creep strain.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is increased interest in the application of compact heat exchangers (CHXs) for nuclear service given their high thermal efficiency and compactness. CHXs are fabricated by joining a stack of etched plates with dense microchannels through diffusion bonding. Diffusion bonding material has basic mechanical properties that differ from a base material, requiring appropriate mechanical properties and allowable stresses for design. Existing nuclear code ASME Section III, Division 5 does not address diffusion bonded materials . Hence, there is a need to develop material properties and allowable stresses of diffusion bonded materials and weldments. In this paper, one candidate material, Alloy 800H, was selected for diffusion bonding trials. Preliminary results obtained from a series of tensile and creep tests suggest that the diffusion bonded material is weaker than the base metal 800H. These experimental data are used in determining recommended allowable stresses of the diffusion bonded 800H material. In this paper, tables of the strength reduction factors for various allowable stresses which includes Smt, So, St, Sy and Su for diffusion bonded Alloy 800H are presented. These reduction factors are applicable to CHX design. The Larson Miller Parameter (LMP) is used to extrapolate short term creep tests to longer creep life and lower temperatures, and estimate the onset of tertiary creep strain.