An immune feedback mechanism based adaptive learning of neural network controller

M. Sasaki, M. Kawafuku, K. Takahashi
{"title":"An immune feedback mechanism based adaptive learning of neural network controller","authors":"M. Sasaki, M. Kawafuku, K. Takahashi","doi":"10.1109/ICONIP.1999.845645","DOIUrl":null,"url":null,"abstract":"Both neural networks and immunity-based systems are biologically inspired techniques that have the capability of identifying and controlling. The information processing principles of these natural systems inspired the development of intelligent problem solving techniques, namely, the artificial neural network and the artificial immune system. An adaptive learning method for a neural network (NN) controller using an immune feedback law is proposed. The immune feedback law features rapid response to foreign matter and rapid stabilization of biological immune systems. Several improvements can be made to improve gradient descent NN learning algorithms. The use of an adaptive learning rate attempts to keep the learning step size as large as possible while keeping learning stable. In the proposed method, because the immune feedback law changes the learning rate of the NN individually and adaptively, it is expected that a cost function is rapidly minimized and learning time is decreased. In the control structure, a reference signal self-organizing control system using NNs for flexible microactuators is used. In this system, the NN functions as a reference input filter, setting new reference signals in the closed loop system. Numerical and experimental results show that the proposed control system is effective in tracking a reference signal.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"2000 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Both neural networks and immunity-based systems are biologically inspired techniques that have the capability of identifying and controlling. The information processing principles of these natural systems inspired the development of intelligent problem solving techniques, namely, the artificial neural network and the artificial immune system. An adaptive learning method for a neural network (NN) controller using an immune feedback law is proposed. The immune feedback law features rapid response to foreign matter and rapid stabilization of biological immune systems. Several improvements can be made to improve gradient descent NN learning algorithms. The use of an adaptive learning rate attempts to keep the learning step size as large as possible while keeping learning stable. In the proposed method, because the immune feedback law changes the learning rate of the NN individually and adaptively, it is expected that a cost function is rapidly minimized and learning time is decreased. In the control structure, a reference signal self-organizing control system using NNs for flexible microactuators is used. In this system, the NN functions as a reference input filter, setting new reference signals in the closed loop system. Numerical and experimental results show that the proposed control system is effective in tracking a reference signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于免疫反馈机制的神经网络控制器自适应学习
神经网络和免疫系统都是受生物学启发的技术,具有识别和控制的能力。这些自然系统的信息处理原理启发了智能问题解决技术的发展,即人工神经网络和人工免疫系统。提出了一种基于免疫反馈律的神经网络控制器自适应学习方法。免疫反馈律具有快速响应外来物质和快速稳定生物免疫系统的特点。可以对梯度下降神经网络学习算法进行一些改进。自适应学习率的使用试图保持学习步长尽可能大,同时保持学习稳定。在该方法中,由于免疫反馈律能自适应地改变神经网络的学习率,期望能快速最小化代价函数,缩短学习时间。在控制结构上,采用基于神经网络的参考信号自组织控制系统对柔性微执行器进行控制。在该系统中,神经网络作为参考输入滤波器,在闭环系统中设置新的参考信号。数值和实验结果表明,该控制系统能够有效地跟踪参考信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1