{"title":"Thermal-aware bus-driven floorplanning","authors":"Po-Hsun Wu, Tsung-Yi Ho","doi":"10.1109/ISLPED.2011.5993637","DOIUrl":null,"url":null,"abstract":"As the number of buses in multi-core SoC designs increase, bus planning problems become a dominant factor in determining the chip performance. To cope with these issues, it is desirable to consider them in the early floorplanning stage. Recently, many bus-driven floorplanners have been proposed in the literature. However, those proposed algorithms only consider the bus planning problem without the thermal effect. As a result, there are hotspots which result in high chip temperature on the chip. In this paper, a thermal-aware bus-driven floorplanning algorithm is proposed to separate hotspots during the perturbation stage and to keep buses away from hotspots during the routing stage. To avoid time-consuming thermal simulations, the superposition of thermal profiles which are the thermal distribution of each module is adopted to efficiently estimate the module temperature. Compared with the state-of-the-art bus-driven floorplan-ner, experimental results demonstrate that the proposed algorithm can effectively separate hotspots and reduce the chip temperature. Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids — Placement and Routing General Terms: Algorithms, Design","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As the number of buses in multi-core SoC designs increase, bus planning problems become a dominant factor in determining the chip performance. To cope with these issues, it is desirable to consider them in the early floorplanning stage. Recently, many bus-driven floorplanners have been proposed in the literature. However, those proposed algorithms only consider the bus planning problem without the thermal effect. As a result, there are hotspots which result in high chip temperature on the chip. In this paper, a thermal-aware bus-driven floorplanning algorithm is proposed to separate hotspots during the perturbation stage and to keep buses away from hotspots during the routing stage. To avoid time-consuming thermal simulations, the superposition of thermal profiles which are the thermal distribution of each module is adopted to efficiently estimate the module temperature. Compared with the state-of-the-art bus-driven floorplan-ner, experimental results demonstrate that the proposed algorithm can effectively separate hotspots and reduce the chip temperature. Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids — Placement and Routing General Terms: Algorithms, Design