L. Poulain, N. Waldhoff, D. Gloria, F. Danneville, G. Dambrine
{"title":"Small signal and HF noise performance of 45 nm CMOS technology in mmW range","authors":"L. Poulain, N. Waldhoff, D. Gloria, F. Danneville, G. Dambrine","doi":"10.1109/RFIC.2011.5940646","DOIUrl":null,"url":null,"abstract":"The development of applications in millimeter wave range (mmW) during the last decade is strongly related to continuous progress of Si Technology, which kept on evolving through aggressive transistor gate length down-scaling. In this context, this paper aims to present DC, small signal and noise performance up mmW range of recently developed 45-nm bulk CMOS Technology. For this purpose, S parameters were measured up to 67 GHz, a high frequency (HF) noise model was extracted in 6–40 GHz frequency range, and its accuracy verified through a comparison with the noise figure measured in W band with a 50 Ω impedance set at the transistor. The technology offers fT, fMAX respectively of 200 and 300 GHz in line with up-to-date published results for a 45 nm CMOS Technology. At the meantime, a minimum noise figure of 4.5 dB at 94 GHz is demonstrated (verified through W band noise measurements).","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"45 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The development of applications in millimeter wave range (mmW) during the last decade is strongly related to continuous progress of Si Technology, which kept on evolving through aggressive transistor gate length down-scaling. In this context, this paper aims to present DC, small signal and noise performance up mmW range of recently developed 45-nm bulk CMOS Technology. For this purpose, S parameters were measured up to 67 GHz, a high frequency (HF) noise model was extracted in 6–40 GHz frequency range, and its accuracy verified through a comparison with the noise figure measured in W band with a 50 Ω impedance set at the transistor. The technology offers fT, fMAX respectively of 200 and 300 GHz in line with up-to-date published results for a 45 nm CMOS Technology. At the meantime, a minimum noise figure of 4.5 dB at 94 GHz is demonstrated (verified through W band noise measurements).